from skimage import io import torch, os from PIL import Image from briarmbg import BriaRMBG from utilities import preprocess_image, postprocess_image def example_inference(): model_path = f"{os.path.dirname(__file__)}/model.pth" im_path = f"{os.path.dirname(__file__)}/example_input.jpg" net = BriaRMBG() if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)).cuda() else: net.load_state_dict(torch.load(model_path,map_location="cpu")) net.eval() # prepare input model_input_size = [1024,1024] orig_im = io.imread(im_path) orig_im_size = orig_im.shape[0:2] image = preprocess_image(orig_im, model_input_size) if torch.cuda.is_available(): image=image.cuda() # inference result=net(image) # post process result_image = postprocess_image(result[0][0], orig_im_size) # save result pil_im = Image.fromarray(result_image) no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0)) orig_image = Image.open(im_path) no_bg_image.paste(orig_image, mask=pil_im) no_bg_image.save("example_image_no_bg.png") if __name__ == "__main__": example_inference()