File size: 4,799 Bytes
36c981f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: in the style of <s0><s1>
output:
url: image-0.png
- text: in the style of <s0><s1>
output:
url: image-1.png
- text: in the style of <s0><s1>
output:
url: image-2.png
- text: in the style of <s0><s1>
output:
url: image-3.png
- text: in the style of <s0><s1>
output:
url: image-4.png
- text: in the style of <s0><s1>
output:
url: image-5.png
- text: in the style of <s0><s1>
output:
url: image-6.png
- text: in the style of <s0><s1>
output:
url: image-7.png
- text: in the style of <s0><s1>
output:
url: image-8.png
- text: in the style of <s0><s1>
output:
url: image-9.png
- text: in the style of <s0><s1>
output:
url: image-10.png
- text: in the style of <s0><s1>
output:
url: image-11.png
- text: in the style of <s0><s1>
output:
url: image-12.png
- text: in the style of <s0><s1>
output:
url: image-13.png
- text: in the style of <s0><s1>
output:
url: image-14.png
- text: in the style of <s0><s1>
output:
url: image-15.png
- text: in the style of <s0><s1>
output:
url: image-16.png
- text: in the style of <s0><s1>
output:
url: image-17.png
- text: in the style of <s0><s1>
output:
url: image-18.png
- text: in the style of <s0><s1>
output:
url: image-19.png
- text: in the style of <s0><s1>
output:
url: image-20.png
- text: in the style of <s0><s1>
output:
url: image-21.png
- text: in the style of <s0><s1>
output:
url: image-22.png
- text: in the style of <s0><s1>
output:
url: image-23.png
- text: in the style of <s0><s1>
output:
url: image-24.png
- text: in the style of <s0><s1>
output:
url: image-25.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: in the style of <s0><s1>
license: openrail++
---
# SDXL LoRA DreamBooth - briefwork/bobobo-lora
<Gallery />
## Model description
### These are briefwork/bobobo-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`bobobo-lora.safetensors` here 💾](/briefwork/bobobo-lora/blob/main/bobobo-lora.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:bobobo-lora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`bobobo-lora_emb.safetensors` here 💾](/briefwork/bobobo-lora/blob/main/bobobo-lora_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `bobobo-lora_emb` to your prompt. For example, `in the style of bobobo-lora_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('briefwork/bobobo-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='briefwork/bobobo-lora', filename='bobobo-lora_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('in the style of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/briefwork/bobobo-lora/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|