--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-fa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: fa split: test args: fa metrics: - name: Wer type: wer value: 35.497333642476235 --- # whisper-small-fa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9258 - Wer: 35.4973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:------:|:---------------:|:-------:| | 0.0193 | 8.1103 | 20000 | 0.5349 | 36.7125 | | 0.0046 | 16.2206 | 40000 | 0.6839 | 36.0033 | | 0.0018 | 24.3309 | 60000 | 0.7936 | 36.2543 | | 0.0003 | 32.4412 | 80000 | 0.8729 | 35.9406 | | 0.0 | 40.5515 | 100000 | 0.9258 | 35.4973 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0