{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793ed5236f40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691189079637074101, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOM7nPqxG3LszPhQ/OM7nPqxG3LszPhQ/OM7nPqxG3LszPhQ/OM7nPqxG3LszPhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4OfPP179nr8Gaei+fdrNvv3JsLx8NHO/lHS1vnUXXr+qxcO/ku3Lv6ezhr+Fm0U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4zuc+rEbcuzM+FD9YHzy65fTfuoRnuTs4zuc+rEbcuzM+FD9YHzy65fTfuoRnuTs4zuc+rEbcuzM+FD9YHzy65fTfuoRnuTs4zuc+rEbcuzM+FD9YHzy65fTfuoRnuTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4527452 -0.00672229 0.5790741 ]\n [ 0.4527452 -0.00672229 0.5790741 ]\n [ 0.4527452 -0.00672229 0.5790741 ]\n [ 0.4527452 -0.00672229 0.5790741 ]]", "desired_goal": "[[ 1.6242638 -1.2421072 -0.45392627]\n [-0.40205756 -0.02158069 -0.9500196 ]\n [-0.35440505 -0.8675454 -1.5294697 ]\n [-1.5931876 -1.0523576 0.04824402]]", "observation": "[[ 0.4527452 -0.00672229 0.5790741 -0.00071763 -0.00170865 0.00565809]\n [ 0.4527452 -0.00672229 0.5790741 -0.00071763 -0.00170865 0.00565809]\n [ 0.4527452 -0.00672229 0.5790741 -0.00071763 -0.00170865 0.00565809]\n [ 0.4527452 -0.00672229 0.5790741 -0.00071763 -0.00170865 0.00565809]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAapwAvjbkeL1IVAU+3/2yvOYPAj6pHo87LXTnPc9L0r17azU+/1zUvWF49D3R+4I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12559667 -0.06076451 0.13020432]\n [-0.02184957 0.12701377 0.00436767]\n [ 0.11301456 -0.10268366 0.17716782]\n [-0.103693 0.11937023 0.06395686]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO6jEdYzLFcCUhpRSlIwBbJRLMowBdJRHQJbzUB7u2JB1fZQoaAZoCWgPQwi37BD/sBUTwJSGlFKUaBVLMmgWR0CW8tV5KODKdX2UKGgGaAloD0MIQpPEknI3F8CUhpRSlGgVSzJoFkdAlvJYZ2pyZXV9lChoBmgJaA9DCAKgihu3uA/AlIaUUpRoFUsyaBZHQJbxzCemNzd1fZQoaAZoCWgPQwi7D0BqE8cIwJSGlFKUaBVLMmgWR0CW9pIRh+fAdX2UKGgGaAloD0MIN/3ZjxRRDcCUhpRSlGgVSzJoFkdAlvYYoqkM1HV9lChoBmgJaA9DCPMEwk6xqgnAlIaUUpRoFUsyaBZHQJb1mrPt2LZ1fZQoaAZoCWgPQwhm+E83UNATwJSGlFKUaBVLMmgWR0CW9Q4Qz1sddX2UKGgGaAloD0MIgsmNImsNC8CUhpRSlGgVSzJoFkdAlvivq5byH3V9lChoBmgJaA9DCM7fhEIE/AnAlIaUUpRoFUsyaBZHQJb4NMoMKCx1fZQoaAZoCWgPQwhtH/KWq78CwJSGlFKUaBVLMmgWR0CW97TyJ9ApdX2UKGgGaAloD0MIWIy61t6XEMCUhpRSlGgVSzJoFkdAlvcnQY1pCnV9lChoBmgJaA9DCJbMsbyr/gPAlIaUUpRoFUsyaBZHQJb6u57PY4B1fZQoaAZoCWgPQwjBVZ5A2IkHwJSGlFKUaBVLMmgWR0CW+kIsiB5HdX2UKGgGaAloD0MI+RBUjV5tB8CUhpRSlGgVSzJoFkdAlvnEP6KtP3V9lChoBmgJaA9DCOW2fY/6qwjAlIaUUpRoFUsyaBZHQJb5N3kgfU51fZQoaAZoCWgPQwh3LLZJRUMLwJSGlFKUaBVLMmgWR0CW/OlRgqmTdX2UKGgGaAloD0MIVyb8Uj+PB8CUhpRSlGgVSzJoFkdAlvxuFQEZBXV9lChoBmgJaA9DCN8xPPaz2Pq/lIaUUpRoFUsyaBZHQJb78D5j6N51fZQoaAZoCWgPQwi70FynkVYOwJSGlFKUaBVLMmgWR0CW+2J/5LyudX2UKGgGaAloD0MIXFg33h05C8CUhpRSlGgVSzJoFkdAlv79pqREGHV9lChoBmgJaA9DCIyfxr35DQzAlIaUUpRoFUsyaBZHQJb+gjZ+QU51fZQoaAZoCWgPQwjkEHFzKnkHwJSGlFKUaBVLMmgWR0CW/gMCcPOIdX2UKGgGaAloD0MIXvbrTne+DMCUhpRSlGgVSzJoFkdAlv11WXC0nnV9lChoBmgJaA9DCDF4mPbNfQvAlIaUUpRoFUsyaBZHQJcA/P9kz411fZQoaAZoCWgPQwj43XTLDrESwJSGlFKUaBVLMmgWR0CXAIGbTc7AdX2UKGgGaAloD0MIA+55/rRxBcCUhpRSlGgVSzJoFkdAlwABrJr+HnV9lChoBmgJaA9DCHl2+daH9QnAlIaUUpRoFUsyaBZHQJb/c+bExZd1fZQoaAZoCWgPQwh8Yp0q33MIwJSGlFKUaBVLMmgWR0CXAyvOyE+QdX2UKGgGaAloD0MIdqVlpN5TFcCUhpRSlGgVSzJoFkdAlwKwz+FUQ3V9lChoBmgJaA9DCGoV/aGZ5wHAlIaUUpRoFUsyaBZHQJcCMYqG1x91fZQoaAZoCWgPQwgGE38UdQYNwJSGlFKUaBVLMmgWR0CXAaRVZLZjdX2UKGgGaAloD0MITRB1H4D0BsCUhpRSlGgVSzJoFkdAlwUYGyHEdnV9lChoBmgJaA9DCFfMCG8PwgHAlIaUUpRoFUsyaBZHQJcEnGACnxd1fZQoaAZoCWgPQwjnGfuSjWcLwJSGlFKUaBVLMmgWR0CXBBx8D0UXdX2UKGgGaAloD0MIHcu76gFDEsCUhpRSlGgVSzJoFkdAlwOOcH4XXXV9lChoBmgJaA9DCFWkwthCkBHAlIaUUpRoFUsyaBZHQJcHKGDcuap1fZQoaAZoCWgPQwj3PH/aqO4IwJSGlFKUaBVLMmgWR0CXBq0/GEPEdX2UKGgGaAloD0MItKolHeUQFsCUhpRSlGgVSzJoFkdAlwYuE7GNrHV9lChoBmgJaA9DCP578NqlbQ/AlIaUUpRoFUsyaBZHQJcFoM1CPZJ1fZQoaAZoCWgPQwgujV94JSkDwJSGlFKUaBVLMmgWR0CXCUZHd43WdX2UKGgGaAloD0MIYd9OIsJ/+7+UhpRSlGgVSzJoFkdAlwjK7iADrHV9lChoBmgJaA9DCBnJHqFmCALAlIaUUpRoFUsyaBZHQJcIS/fwZwZ1fZQoaAZoCWgPQwh7Ss6JPXQJwJSGlFKUaBVLMmgWR0CXB76wt8NQdX2UKGgGaAloD0MIZylZTkKpCcCUhpRSlGgVSzJoFkdAlwtMTviLl3V9lChoBmgJaA9DCHuhgO1gRAfAlIaUUpRoFUsyaBZHQJcK0JY1YQt1fZQoaAZoCWgPQwi/gF64czEQwJSGlFKUaBVLMmgWR0CXClDV6NVBdX2UKGgGaAloD0MIyZBj6xlCDcCUhpRSlGgVSzJoFkdAlwnDK5kK/nV9lChoBmgJaA9DCPc96q9XGAvAlIaUUpRoFUsyaBZHQJcNNi5NGmV1fZQoaAZoCWgPQwjNyvYhbzkEwJSGlFKUaBVLMmgWR0CXDLpd8iOedX2UKGgGaAloD0MIeZCeIocIBcCUhpRSlGgVSzJoFkdAlww7R0EHMXV9lChoBmgJaA9DCIyEtpxLUQ/AlIaUUpRoFUsyaBZHQJcLrb5/LDB1fZQoaAZoCWgPQwjO4O8Xs0UMwJSGlFKUaBVLMmgWR0CXDyi8WbgCdX2UKGgGaAloD0MIWvENhc9WAsCUhpRSlGgVSzJoFkdAlw6un2qT83V9lChoBmgJaA9DCHwpPGh2PQzAlIaUUpRoFUsyaBZHQJcOMFnqVyF1fZQoaAZoCWgPQwjLuRRXlf0LwJSGlFKUaBVLMmgWR0CXDaKMvRJFdX2UKGgGaAloD0MILA5nfjVnCMCUhpRSlGgVSzJoFkdAlxE4RujynXV9lChoBmgJaA9DCCy8y0V8JxHAlIaUUpRoFUsyaBZHQJcQvS9du511fZQoaAZoCWgPQwhMxjGSPWITwJSGlFKUaBVLMmgWR0CXED3mV7hOdX2UKGgGaAloD0MI4297gsRWCsCUhpRSlGgVSzJoFkdAlw+wm/nGKnV9lChoBmgJaA9DCAqEnWLV4AnAlIaUUpRoFUsyaBZHQJcTZuO0b991fZQoaAZoCWgPQwhDxw4qcS0QwJSGlFKUaBVLMmgWR0CXEuvkzXSSdX2UKGgGaAloD0MInDI334hu+7+UhpRSlGgVSzJoFkdAlxJslPacqnV9lChoBmgJaA9DCHUAxF29yhDAlIaUUpRoFUsyaBZHQJcR31lGwzN1fZQoaAZoCWgPQwig3LbvUX8KwJSGlFKUaBVLMmgWR0CXFXRmK64EdX2UKGgGaAloD0MIiiDOwwmsBMCUhpRSlGgVSzJoFkdAlxT5Sm65G3V9lChoBmgJaA9DCCXnxB7a5xbAlIaUUpRoFUsyaBZHQJcUedqcmSh1fZQoaAZoCWgPQwgH0sWmlUL5v5SGlFKUaBVLMmgWR0CXE+xxDLKWdX2UKGgGaAloD0MIcv4mFCLgC8CUhpRSlGgVSzJoFkdAlxelrdnCf3V9lChoBmgJaA9DCJ3WbVD7TRTAlIaUUpRoFUsyaBZHQJcXKnxaxHJ1fZQoaAZoCWgPQwgabVUS2WcQwJSGlFKUaBVLMmgWR0CXFqs7MgU2dX2UKGgGaAloD0MIih9j7loSEMCUhpRSlGgVSzJoFkdAlxYdwR5C4XV9lChoBmgJaA9DCDZ1HhX/lw3AlIaUUpRoFUsyaBZHQJcaBHVf/m11fZQoaAZoCWgPQwgX1/hM9k8EwJSGlFKUaBVLMmgWR0CXGYlZ5iVjdX2UKGgGaAloD0MIlj/fFiz1DMCUhpRSlGgVSzJoFkdAlxkKN2ki2XV9lChoBmgJaA9DCIv9Zffk4fi/lIaUUpRoFUsyaBZHQJcYfhDPWx11fZQoaAZoCWgPQwgSbFz/rg8NwJSGlFKUaBVLMmgWR0CXHAyyD7IldX2UKGgGaAloD0MIu0VgrG+gCcCUhpRSlGgVSzJoFkdAlxuRVlwtKHV9lChoBmgJaA9DCCVa8nha3gHAlIaUUpRoFUsyaBZHQJcbEmD15B11fZQoaAZoCWgPQwhFEVK3s88FwJSGlFKUaBVLMmgWR0CXGoRcu8K5dX2UKGgGaAloD0MIrOXOTDAcEcCUhpRSlGgVSzJoFkdAlx4mG7Bfr3V9lChoBmgJaA9DCFDIztvYTA7AlIaUUpRoFUsyaBZHQJcdqvA44qB1fZQoaAZoCWgPQwjVko5yMHsAwJSGlFKUaBVLMmgWR0CXHSurp7kXdX2UKGgGaAloD0MIz79d9usO/7+UhpRSlGgVSzJoFkdAlxyeEdvKl3V9lChoBmgJaA9DCBCzl22nbQfAlIaUUpRoFUsyaBZHQJchMeuFHrh1fZQoaAZoCWgPQwiPq5FdadkLwJSGlFKUaBVLMmgWR0CXILhKlHjIdX2UKGgGaAloD0MIP62iPzQTEsCUhpRSlGgVSzJoFkdAlyA6e9SMtXV9lChoBmgJaA9DCFLzVfKxuwDAlIaUUpRoFUsyaBZHQJcfrtb9qDd1fZQoaAZoCWgPQwgNp8zNN2IHwJSGlFKUaBVLMmgWR0CXJGAt4A0bdX2UKGgGaAloD0MISpo/prUpDsCUhpRSlGgVSzJoFkdAlyPma2F36nV9lChoBmgJaA9DCI3uIHamkAfAlIaUUpRoFUsyaBZHQJcjaNLlFMJ1fZQoaAZoCWgPQwi62/XSFIH5v5SGlFKUaBVLMmgWR0CXItzIFNcodX2UKGgGaAloD0MIjNzT1R0LAsCUhpRSlGgVSzJoFkdAlye2cz67/XV9lChoBmgJaA9DCJj3ONOErQHAlIaUUpRoFUsyaBZHQJcnPM9r4351fZQoaAZoCWgPQwifknNiDw0KwJSGlFKUaBVLMmgWR0CXJr7bcoH+dX2UKGgGaAloD0MIokW28/3EEcCUhpRSlGgVSzJoFkdAlyYzI/7iynV9lChoBmgJaA9DCFvOpbiqzAjAlIaUUpRoFUsyaBZHQJcrHMEA5rB1fZQoaAZoCWgPQwhoeR7cnbULwJSGlFKUaBVLMmgWR0CXKqMZxaPkdX2UKGgGaAloD0MILEgzFk0HB8CUhpRSlGgVSzJoFkdAlyolSGahH3V9lChoBmgJaA9DCCEeiZengxDAlIaUUpRoFUsyaBZHQJcpmTq0MPV1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}