bsen26 commited on
Commit
ce6121c
1 Parent(s): f33b79a

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: meedan/paraphrase-filipino-mpnet-base-v2
9
+ datasets:
10
+ - bsen26/eyeR-classification-multi-label-category2
11
+ metrics:
12
+ - accuracy
13
+ widget:
14
+ - text: i ordered shake shake fries but they give me just the plain one!! there's
15
+ no ketchup or any cutlery!!! i will only give you one star!! tsk poor service
16
+ ??
17
+ - text: The fries were soggy and did not taste good, there was no cutlery, the butter
18
+ was already melted when I got the order.
19
+ - text: i ordered crispy fillet ala king why no sauce ? and asked for iced tea and
20
+ you give pineapple juice ? are you kidding me ? are you even reading some instructions?
21
+ - text: Wrong coffee / no ketchup / cold fries. Ugh
22
+ - text: They have forgot to put inside the toy i ordered, my child is dispointed because
23
+ she's expecting the pikachu toy please fix this !!
24
+ pipeline_tag: text-classification
25
+ inference: false
26
+ model-index:
27
+ - name: SetFit with meedan/paraphrase-filipino-mpnet-base-v2
28
+ results:
29
+ - task:
30
+ type: text-classification
31
+ name: Text Classification
32
+ dataset:
33
+ name: bsen26/eyeR-classification-multi-label-category2
34
+ type: bsen26/eyeR-classification-multi-label-category2
35
+ split: test
36
+ metrics:
37
+ - type: accuracy
38
+ value: 0.5407407407407407
39
+ name: Accuracy
40
+ ---
41
+
42
+ # SetFit with meedan/paraphrase-filipino-mpnet-base-v2
43
+
44
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [bsen26/eyeR-classification-multi-label-category2](https://huggingface.co/datasets/bsen26/eyeR-classification-multi-label-category2) dataset that can be used for Text Classification. This SetFit model uses [meedan/paraphrase-filipino-mpnet-base-v2](https://huggingface.co/meedan/paraphrase-filipino-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
45
+
46
+ The model has been trained using an efficient few-shot learning technique that involves:
47
+
48
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** SetFit
55
+ - **Sentence Transformer body:** [meedan/paraphrase-filipino-mpnet-base-v2](https://huggingface.co/meedan/paraphrase-filipino-mpnet-base-v2)
56
+ - **Classification head:** a OneVsRestClassifier instance
57
+ - **Maximum Sequence Length:** 128 tokens
58
+ <!-- - **Number of Classes:** Unknown -->
59
+ - **Training Dataset:** [bsen26/eyeR-classification-multi-label-category2](https://huggingface.co/datasets/bsen26/eyeR-classification-multi-label-category2)
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Accuracy |
73
+ |:--------|:---------|
74
+ | **all** | 0.5407 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("bsen26/eyeR-category2-multilabel")
93
+ # Run inference
94
+ preds = model("Wrong coffee / no ketchup / cold fries. Ugh")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:--------|:----|
126
+ | Word count | 1 | 18.3958 | 41 |
127
+
128
+ ### Training Hyperparameters
129
+ - batch_size: (16, 16)
130
+ - num_epochs: (1, 1)
131
+ - max_steps: -1
132
+ - sampling_strategy: oversampling
133
+ - num_iterations: 20
134
+ - body_learning_rate: (2e-05, 2e-05)
135
+ - head_learning_rate: 2e-05
136
+ - loss: CosineSimilarityLoss
137
+ - distance_metric: cosine_distance
138
+ - margin: 0.25
139
+ - end_to_end: False
140
+ - use_amp: False
141
+ - warmup_proportion: 0.1
142
+ - seed: 42
143
+ - eval_max_steps: -1
144
+ - load_best_model_at_end: False
145
+
146
+ ### Training Results
147
+ | Epoch | Step | Training Loss | Validation Loss |
148
+ |:------:|:----:|:-------------:|:---------------:|
149
+ | 0.0010 | 1 | 0.0919 | - |
150
+ | 0.0521 | 50 | 0.1443 | - |
151
+ | 0.1042 | 100 | 0.0682 | - |
152
+ | 0.1562 | 150 | 0.1043 | - |
153
+ | 0.2083 | 200 | 0.0653 | - |
154
+ | 0.2604 | 250 | 0.0136 | - |
155
+ | 0.3125 | 300 | 0.0025 | - |
156
+ | 0.3646 | 350 | 0.0195 | - |
157
+ | 0.4167 | 400 | 0.0073 | - |
158
+ | 0.4688 | 450 | 0.0115 | - |
159
+ | 0.5208 | 500 | 0.0045 | - |
160
+ | 0.5729 | 550 | 0.0052 | - |
161
+ | 0.625 | 600 | 0.0091 | - |
162
+ | 0.6771 | 650 | 0.0037 | - |
163
+ | 0.7292 | 700 | 0.0027 | - |
164
+ | 0.7812 | 750 | 0.0058 | - |
165
+ | 0.8333 | 800 | 0.0118 | - |
166
+ | 0.8854 | 850 | 0.0025 | - |
167
+ | 0.9375 | 900 | 0.0005 | - |
168
+ | 0.9896 | 950 | 0.0085 | - |
169
+
170
+ ### Framework Versions
171
+ - Python: 3.10.12
172
+ - SetFit: 1.0.3
173
+ - Sentence Transformers: 2.7.0
174
+ - Transformers: 4.40.2
175
+ - PyTorch: 2.2.1+cu121
176
+ - Datasets: 2.19.1
177
+ - Tokenizers: 0.19.1
178
+
179
+ ## Citation
180
+
181
+ ### BibTeX
182
+ ```bibtex
183
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
184
+ doi = {10.48550/ARXIV.2209.11055},
185
+ url = {https://arxiv.org/abs/2209.11055},
186
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
187
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
188
+ title = {Efficient Few-Shot Learning Without Prompts},
189
+ publisher = {arXiv},
190
+ year = {2022},
191
+ copyright = {Creative Commons Attribution 4.0 International}
192
+ }
193
+ ```
194
+
195
+ <!--
196
+ ## Glossary
197
+
198
+ *Clearly define terms in order to be accessible across audiences.*
199
+ -->
200
+
201
+ <!--
202
+ ## Model Card Authors
203
+
204
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
205
+ -->
206
+
207
+ <!--
208
+ ## Model Card Contact
209
+
210
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
211
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meedan/paraphrase-filipino-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.40.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.0",
4
+ "transformers": "4.17.0",
5
+ "pytorch": "1.10.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cd222a92569b5e2ec350fd443c282bdf08821f108d7aff0fb96f1f6b5fe559c
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeebf566f0895656a5ccda8abbf27227b5d689ee99511a30855b9a2b15951009
3
+ size 78756
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }