bsenst commited on
Commit
2367858
1 Parent(s): 4f97b20

commit a2c-AntBulletEnv-v0

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 626.41 +/- 151.93
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1547.79 +/- 402.72
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53b11046eb65f3db56c9180926bef9df53c987a3f4925e19b80e5a459ac9fbaf
3
- size 129448
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b601ecd5fe1e6118be9e67c8ec05a19cd4e37dd5e51e39405ae2dbb576d46583
3
+ size 129165
a2c-AntBulletEnv-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x757b2a0f7d40>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x757b2a0f7dd0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x757b2a0f7e60>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x757b2a0f7ef0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x757b2a0f7f80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x757b2a0fd050>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x757b2a0fd0e0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x757b2a0fd170>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x757b2a0fd200>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x757b2a0fd290>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x757b2a0fd320>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x757b2a0fd3b0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x757b2a0c07e0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -32,39 +32,12 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "observation_space": {
36
- ":type:": "<class 'gym.spaces.box.Box'>",
37
- ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
38
- "dtype": "float32",
39
- "_shape": [
40
- 28
41
- ],
42
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
- "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
- "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
- "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
- "_np_random": null
47
- },
48
- "action_space": {
49
- ":type:": "<class 'gym.spaces.box.Box'>",
50
- ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
51
- "dtype": "float32",
52
- "_shape": [
53
- 8
54
- ],
55
- "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
- "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
- "bounded_below": "[ True True True True True True True True]",
58
- "bounded_above": "[ True True True True True True True True]",
59
- "_np_random": null
60
- },
61
- "n_envs": 4,
62
- "num_timesteps": 5000000,
63
- "_total_timesteps": 5000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1680812267624404841,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,7 +46,7 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAe0lmv3Ffrb9UPou+OhVHv27/aj4jGHc90oS1u6UeA73BbFk/tG3HO190Br9/Kig8thOMPtkJtDwANQE/tM72PO+bxr0DaNA7x1EeP76+oD1bOHO/LweevAW2jb5C2kK9wuINP7eP/z4AYeA+jQ0+P73Me77Ofa8/rfFevtn0m74YTje/CPrAvsYNgL9X7To7D/0Pv032Gr783RK/QfyGPqsedD/fsN6+RyQBP0mGwjz4SqE/Hwbbv2JnWb+mHro/FbcFv7BSIz4fJjk/MMK7vcLiDT+3j/8+AGHgPkVqrL82iMS9PYfvv5N7wr8KEDu/L47tvumfjj4QQ+q//bKPvbSjj7+0kXU+gUcGv5mLib0Tlak/ZKV9u/ToAT/3uce6PhKzP4PMObt0f/O/Hh8ZvjGezz+9Rzc+6IFIP1RmFr7C4g0/t4//PgBh4D5Faqy/85oEvkYSX79HUYk+ZHpPvxhilj2QomA9AbX7voX5Zz4SZ4Q/aj/Fu9uOIL8Qo2i9feA9vt1Fw7zD4I8+nneCPeoRjz/1HRy8qMHwvlmi87sf7Z+/GL62OhPy6j6LuJE7wuINP7eP/z4AYeA+jQ0+P5R0lGIu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,26 +54,54 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAOq0izYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAVXDA5AAAAACFp6b8AAAAAA/HbPQAAAADHsv8/AAAAAJ//7z0AAAAAxbPfPwAAAADGFi49AAAAAN4AAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9oMO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApRiLPQAAAADR5Py/AAAAAIZe0j0AAAAAibDhPwAAAACNbwy+AAAAALfH/j8AAAAAockPPgAAAABZ5Pi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAo3NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGCq7D0AAAAAmhXfvwAAAACPlRc9AAAAADCg3T8AAAAAaubavAAAAABlXds/AAAAAMO9C74AAAAATFXgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpZ/zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDaPYk8AAAAAEtvAMAAAAAAxZK2PQAAAACCpvc/AAAAAGKdDj4AAAAA8mMAQAAAAAD4sAG+AAAAAF7w/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
88
  "sde_sample_freq": -1,
89
  "_current_progress_remaining": 0.0,
 
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIHhUtEofCCMAWyUTegDjAF0lEdAvsCMOXmeUnV9lChoBkdAhoxjMmnfmGgHTegDaAhHQL7As9GI9DB1fZQoaAZHQIcfW3fAKv5oB03oA2gIR0C+whRmoR7JdX2UKGgGR0CFbMHmA9V4aAdN6ANoCEdAvsUyP7vXsnV9lChoBkdAgHVG4qgAZWgHTegDaAhHQL7HW58BuGd1fZQoaAZHQIbVzS/j81poB03oA2gIR0C+x4AhW5pbdX2UKGgGR0CHLsqKgqVhaAdN6ANoCEdAvsiPmeUY9HV9lChoBkdAheqyKNyYHGgHTegDaAhHQL7LWLUTcqR1fZQoaAZHQIS597laKUFoB03oA2gIR0C+zZaJIlMRdX2UKGgGR0CGf9U/fO2RaAdN6ANoCEdAvs27QNTcZnV9lChoBkdAhLdycLBsRGgHTegDaAhHQL7Oy12aDwp1fZQoaAZHQIIHatxMnJFoB03oA2gIR0C+0ZM+V1OkdX2UKGgGR0CG19+ee4CqaAdN6ANoCEdAvtOxtXPqs3V9lChoBkdAh5PmucMEzWgHTegDaAhHQL7T1tQ9A5d1fZQoaAZHQITT3OKO1fFoB03oA2gIR0C+1OtAs053dX2UKGgGR0CD2rV6NVBEaAdN6ANoCEdAvtfWEi+tbXV9lChoBkdAhVzauwHJLmgHTegDaAhHQL7aAx0MgEF1fZQoaAZHQIbqXOD8LrpoB03oA2gIR0C+2ipNwiqydX2UKGgGR0CFuPLwF1SwaAdN6ANoCEdAvts9EhJRO3V9lChoBkdAhaZ+Jxeb/mgHTegDaAhHQL7eD9FWn0l1fZQoaAZHQILfQzzmOlxoB03oA2gIR0C+4DkOVgQZdX2UKGgGR0CHmKFnqVyFaAdN6ANoCEdAvuBdJXhfjXV9lChoBkdAhB2hJI1+AmgHTegDaAhHQL7hk8zQ/ot1fZQoaAZHQIdXau2Zy+9oB03oA2gIR0C+5Oduk1uSdX2UKGgGR0CGII+TvAoHaAdN6ANoCEdAvuc9rVOKwnV9lChoBkdAhpHdYfW+XmgHTegDaAhHQL7nY3n6l+F1fZQoaAZHQINXpUR3/xVoB03oA2gIR0C+6IBM36yjdX2UKGgGR0CH6E/QBxPwaAdN6ANoCEdAvutdPJq7AnV9lChoBkdAh0ciyhSLqGgHTegDaAhHQL7tk6asp5N1fZQoaAZHQIdAPE0iyIJoB03oA2gIR0C+7cKsySFHdX2UKGgGR0CHJqP+4smOaAdN6ANoCEdAvu7iAd4mkXV9lChoBkdAh5Tibc45tGgHTegDaAhHQL7xqqDbrTp1fZQoaAZHQIheKngpBopoB03oA2gIR0C+88ywwCbMdX2UKGgGR0CHDF6guh9LaAdN6ANoCEdAvvPx0YCQtHV9lChoBkdAiKZfDDTBqWgHTegDaAhHQL71ATVlPJt1fZQoaAZHQIN50qDsdDJoB03oA2gIR0C+9+Sad+XrdX2UKGgGR0CHs3qOcUdraAdN6ANoCEdAvvoe32EkB3V9lChoBkdAhTgnNHH3lGgHTegDaAhHQL76Q6tknTl1fZQoaAZHQIaZR0Syt3hoB03oA2gIR0C++1yFoL5RdX2UKGgGR0CD3FYwqRU4aAdN6ANoCEdAvv4lClabF3V9lChoBkdAhQJbTMJQcmgHTegDaAhHQL8AYhf0Eox1fZQoaAZHQIbRiO5rgwZoB03oA2gIR0C/AIt43WFwdX2UKGgGR0CEKyaWHDaXaAdN6ANoCEdAvwIXJW/8EXV9lChoBkdAh0s0uDjBEmgHTegDaAhHQL8FSB+F10V1fZQoaAZHQIYws1Gb1AZoB03oA2gIR0C/B2jwx33YdX2UKGgGR0CCr/tdAxBWaAdN6ANoCEdAvweNAKOT7nV9lChoBkdAhYOjgydnTWgHTegDaAhHQL8IpoE0SAZ1fZQoaAZHQIjLzVhCtzVoB03oA2gIR0C/C3LgTAWSdX2UKGgGR0CGlSO3DvVmaAdN6ANoCEdAvw2QQumJnHV9lChoBkdAglJQ6IWP92gHTegDaAhHQL8NtU34sVd1fZQoaAZHQIT5Sg00m+loB03oA2gIR0C/DtcVclgMdX2UKGgGR0CFvNcmBvrGaAdN6ANoCEdAvxG4pc5bQnV9lChoBkdAhL1FyimEXmgHTegDaAhHQL8T4olD4QB1fZQoaAZHQIOWfhOxjaxoB03oA2gIR0C/FAcW0qpcdX2UKGgGR0CB/IM5wOvuaAdN6ANoCEdAvxUaOKfnOnV9lChoBkdAgsaW8IzFdmgHTegDaAhHQL8X7ag26091fZQoaAZHQIRIa6vq1PZoB03oA2gIR0C/GjOOKfnPdX2UKGgGR0CE/Y7ihnJ1aAdN6ANoCEdAvxpcccU/OnV9lChoBkdAg6RfACW/rWgHTegDaAhHQL8bc9i+cpd1fZQoaAZHQIWRuHN5dGBoB03oA2gIR0C/HjW38XN1dX2UKGgGR0CF74szVMEiaAdN6ANoCEdAvyBrZCfHxXV9lChoBkdAhqxwjlgc+GgHTegDaAhHQL8gkNr0rbx1fZQoaAZHQIRtquB+WnloB03oA2gIR0C/IhRInSfEdX2UKGgGR0CBiB7di2DyaAdN6ANoCEdAvyVZQFcIJXV9lChoBkdAg5qWmgrYoWgHTegDaAhHQL8ngIaLn9x1fZQoaAZHQIXXs2rGR3hoB03oA2gIR0C/J6aIrOJMdX2UKGgGR0CGOJKZDzAfaAdN6ANoCEdAvyi728IzFnV9lChoBkdAirzflhgE2mgHTegDaAhHQL8rfOVgQYl1fZQoaAZHQIcDKAvtdAxoB03oA2gIR0C/LZTlkpZwdX2UKGgGR0CHlDAZ88cNaAdN6ANoCEdAvy26KNyYHHV9lChoBkdAhOnvR7Z392gHTegDaAhHQL8uzstkFwF1fZQoaAZHQINakqjJuEVoB03oA2gIR0C/MbYpH7P6dX2UKGgGR0CIwkPOpsGgaAdN6ANoCEdAvzPOKEWZZ3V9lChoBkdAhp3xs2vSt2gHTegDaAhHQL8z8oOx0Mh1fZQoaAZHQIiPTqv/zatoB03oA2gIR0C/NQZGax5cdX2UKGgGR0CE8q7ihnJ1aAdN6ANoCEdAvzfQqBmPHXV9lChoBkdAh+Pxe9i+c2gHTegDaAhHQL85+gXdj5N1fZQoaAZHQIQSao86mwdoB03oA2gIR0C/Oh67/XGwdX2UKGgGR0CHJeo4uK4yaAdN6ANoCEdAvztHbxmTT3V9lChoBkdAhuF8aOxSpGgHTegDaAhHQL8+EB19v0h1fZQoaAZHQIdLYp6QeV9oB03oA2gIR0C/QEPXsgMddX2UKGgGR0B+3sPZqVQiaAdN6ANoCEdAv0BoQBgeBHV9lChoBkdAgjJ1GLDQ7mgHTegDaAhHQL9CDk7Omix1fZQoaAZHQIYdCB3A2ydoB03oA2gIR0C/RO8xj8UFdX2UKGgGR0CFitmgam4zaAdN6ANoCEdAv0cwdhiLEXV9lChoBkdAhjs70e2d/mgHTegDaAhHQL9HVUuL7411fZQoaAZHQIQ6l+RYA81oB03oA2gIR0C/SGg7gbZOdX2UKGgGR0CI0RI7vG6xaAdN6ANoCEdAv0sqbiIcinV9lChoBkdAhNyvYFqzq2gHTegDaAhHQL9NRKArhBJ1fZQoaAZHQIOHSbjLjghoB03oA2gIR0C/TWm5c1O1dX2UKGgGR0CBGO2qkuYhaAdN6ANoCEdAv057AWSEDnV9lChoBkdAg7dzyauwHWgHTegDaAhHQL9RaE7GNrF1fZQoaAZHQIMIxmqYJE9oB03oA2gIR0C/U4FVYISldX2UKGgGR0CIcgiEg4ffaAdN6ANoCEdAv1Ol0xM363V9lChoBkdAh5Pw2dd3S2gHTegDaAhHQL9Uujafzz51fZQoaAZHQIPoO2d/axpoB03oA2gIR0C/V5NWU8msdX2UKGgGR0CElLy+Yc//aAdN6ANoCEdAv1m0D/2kBXV9lChoBkdAg6HWBJ7LMmgHTegDaAhHQL9Z2O9WZJF1fZQoaAZHQIdPYblzU7VoB03oA2gIR0C/Wu7cGkeqdX2UKGgGR0CGCmdd3SrpaAdN6ANoCEdAv14EKlYU4HVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
- "_n_updates": 156250,
99
  "n_steps": 8,
100
  "gamma": 0.99,
101
  "gae_lambda": 0.9,
102
  "ent_coef": 0.0,
103
  "vf_coef": 0.4,
104
  "max_grad_norm": 0.5,
105
- "normalize_advantage": false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  }
 
4
  ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x76e765017dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76e765017e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76e765017ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76e765017f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x76e76501d050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x76e76501d0e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x76e76501d170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76e76501d200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x76e76501d290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76e76501d320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76e76501d3b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x76e76501d440>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x76e764f69a20>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
32
  "weight_decay": 0
33
  }
34
  },
35
+ "num_timesteps": 10000000,
36
+ "_total_timesteps": 10000000,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1681356149311403557,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
 
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAG45Lvwt59DsvUfs+SzPOPu/os7/e04q/SnAqv6r8ij9LpxM+UiR3vzJfgr+LaB7A0PeIv1wugz4G8Yg+S8piPz+EGr/pHPI+dWMZv2dsLsDheWQ8rgnhPs62Tr1/Mso/0Yhev3RTSD9q9ui/iX9av3REjD4ItT6/50XZPqtmMD+ioZy9sfVpP+7LLb/uKpY+KHVDv+VXq73OGUI+QbwiP6pXJz/WubC/53kaP536b75RoBO+lDCAvyD5lL+o74Q/8OgpvxgBaTyWjby+qUoLwMY/kz/IkqO/ZagMP4l/Wr890Eo+orQKP0CrnT5RYDc+TtuXP7hc5r7klaa+PzuwPi2OAz8584a8jWRkv/UH9zmVTVM/ZiemPx9pqb7GdSA/QB4fP66y1T977Gq/+6Q8v8S7xT1lseg9znBMP9EBTz7RiF6/dFNIP2WoDD8e+JU/SOg4PvXNhz91Aay9v7S9PtLKpD8leJC+TvNtvyxpJz6Foec9yC55vl5MT7+kcYU/SbWHP0VAdj78Ueo+chUmv7n4mz8b786+F1/Ev4ubFr9s1y6/XE7rPSHAoT+ebwG/0Yhev3RTSD9q9ui/HviVP5R0lGIu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADIrTrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBaX/G8AAAAADg6478AAAAA88/ZPAAAAADQv/Y/AAAAAAOhar0AAAAAJePkPwAAAAB0c/49AAAAAIp+3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATC/C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQeGiPAAAAABJhty/AAAAAEiup70AAAAAXt3zPwAAAAB0Apy9AAAAACKk+D8AAAAANx/+PQAAAAB/EgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYiLANQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDWkkT0AAAAAancAwAAAAADWIQA+AAAAAJZ/3z8AAAAA+cZKvQAAAABvwOk/AAAAACT6Sr0AAAAAtU7jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnOxDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBw1GM9AAAAACiB8r8AAAAA/HXTPQAAAACqNuE/AAAAAJAWAT4AAAAAcfrvPwAAAAD1Tdk9AAAAAPay4r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
61
  "sde_sample_freq": -1,
62
  "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ1HwdT5wfiMAWyUTegDjAF0lEdA1Cc/rvsqrnV9lChoBkdAk/KcYyfthWgHTegDaAhHQNQoDL7TDwZ1fZQoaAZHQIWAbcGkep5oB03oA2gIR0DUKBUrwvxpdX2UKGgGR0CS9cI1cdHUaAdN6ANoCEdA1CkjIY3vQXV9lChoBkdAjFfcDjin52gHTegDaAhHQNQpanQtz0Z1fZQoaAZHQJWdQwFkhA5oB03oA2gIR0DUKjRFYuCgdX2UKGgGR0CNTcrf+CK8aAdN6ANoCEdA1Co8OfNA1XV9lChoBkdAjgUGRmseXGgHTegDaAhHQNQrPKN6w+t1fZQoaAZHQI5HDt1IRRNoB03oA2gIR0DUK4RnYg7pdX2UKGgGR0CDq0q4H5aeaAdN6ANoCEdA1CxR9+w1SHV9lChoBkdAkZKKcmShamgHTegDaAhHQNQsWgwCbMJ1fZQoaAZHQItA7KNhmXhoB03oA2gIR0DULW1nlGPQdX2UKGgGR0CGmf9srNGFaAdN6ANoCEdA1C21lgtvoHV9lChoBkdAj+qVQyhzvWgHTegDaAhHQNQuiG5MDfZ1fZQoaAZHQIxh1fmcOLBoB03oA2gIR0DULpBt3wCsdX2UKGgGR0CLoTNg0CRwaAdN6ANoCEdA1C+WNMoMKHV9lChoBkdAiAqBYvFm4GgHTegDaAhHQNQv38RDkU91fZQoaAZHQIYRw1JlJ6JoB03oA2gIR0DUMK784xUOdX2UKGgGR0CVJlQhOgxraAdN6ANoCEdA1DC3I55qunV9lChoBkdAiPQt/OMVDmgHTegDaAhHQNQxw9/e+Eh1fZQoaAZHQIf2PJgb6xhoB03oA2gIR0DUMgu//NqydX2UKGgGR0Ca3BLbpNbkaAdN6ANoCEdA1DLbvHcUNHV9lChoBkdAg0pd5prULGgHTegDaAhHQNQy5DtTkyV1fZQoaAZHQIghRIre67NoB03oA2gIR0DUM/ayzHCGdX2UKGgGR0CGbALb5/LDaAdN6ANoCEdA1DRBhfBvaXV9lChoBkdAggdKDTSb6WgHTegDaAhHQNQ1KqNdZ7p1fZQoaAZHQKAlOi+tbLVoB03oA2gIR0DUNTKUjcEedX2UKGgGR0B+fZP0qYqoaAdN6ANoCEdA1DY1lIVdonV9lChoBkdAk0qnKji4rmgHTegDaAhHQNQ2f7+cYqJ1fZQoaAZHQJ6dC0PYnOVoB03oA2gIR0DUN0q+36RAdX2UKGgGR0CM+E4tHxz8aAdN6ANoCEdA1DdSpj+aSnV9lChoBkdAm6gaWPcSG2gHTegDaAhHQNQ4TSMxXXB1fZQoaAZHQJQOz20zCUJoB03oA2gIR0DUOJPnlnyvdX2UKGgGR0CQFOrKeTV2aAdN6ANoCEdA1Dlh9CeEqXV9lChoBkdAlBUhxkupTGgHTegDaAhHQNQ5ahYeT3Z1fZQoaAZHQJzH02P1ct5oB03oA2gIR0DUOnJ+vyLAdX2UKGgGR0CRhcVTrE9/aAdN6ANoCEdA1Dq5sdT5wnV9lChoBkdAh6ZUCq6vq2gHTegDaAhHQNQ7fpUPxx11fZQoaAZHQJ1L8Rh+fAdoB03oA2gIR0DUO4bOcDr7dX2UKGgGR0CThZ7ZFocraAdN6ANoCEdA1DyC0+1SfnV9lChoBkdAlLv2pIczZmgHTegDaAhHQNQ8zQCKaXt1fZQoaAZHQI63NYOlO45oB01kAmgIR0DUPM9+iJwbdX2UKGgGR0CYudv0RODbaAdN6ANoCEdA1D2bXg9/0HV9lChoBkdAkWOQ8GLUC2gHTegDaAhHQNQ+o0Syt3h1fZQoaAZHQJXnMUypJf9oB03oA2gIR0DUPuzIhhYvdX2UKGgGR0CS3QT7VJ+VaAdN6ANoCEdA1D7vbY9PlHV9lChoBkdAkf4UQ9RrJ2gHTegDaAhHQNQ/vgvlEJB1fZQoaAZHQIoymWUr08NoB03oA2gIR0DUQMb0K7ZndX2UKGgGR0Cb0IAKfFrEaAdN6ANoCEdA1EEOYmsvI3V9lChoBkdAluyjZHuqm2gHTegDaAhHQNRBEM9KVY91fZQoaAZHQJG8s8DB/I9oB03oA2gIR0DUQdv4WUKRdX2UKGgGR0CVlPWAwwj/aAdN6ANoCEdA1ELiCngpB3V9lChoBkdAmfJuVgQYk2gHTegDaAhHQNRDKmGEf1Z1fZQoaAZHQI/j3ukUKzBoB03oA2gIR0DUQyzjfek6dX2UKGgGR0CVWPsKsuFpaAdN6ANoCEdA1EPydat9yHV9lChoBkdAl6B3Sa3I/GgHTegDaAhHQNRE+9YbKih1fZQoaAZHQImAtZNfw7VoB03oA2gIR0DURUCrPt2LdX2UKGgGR0CafGjNpudgaAdN6ANoCEdA1EVDLWqcVnV9lChoBkdAlS0WvW6K+GgHTegDaAhHQNRGCIQvpQl1fZQoaAZHQJWsqEug6EJoB03oA2gIR0DURw75dnkDdX2UKGgGR0CQwQnhbW3CaAdN6ANoCEdA1EdYUqQRw3V9lChoBkdAlDcxC2MKkWgHTegDaAhHQNRHWsAWBSV1fZQoaAZHQID9Uju8brFoB01fAWgIR0DUR8s/nnuBdX2UKGgGR0CTi5hfShJzaAdN6ANoCEdA1EgfQDV6NXV9lChoBkdAhixOtGNJe2gHTegDaAhHQNRJdfJ/5L11fZQoaAZHQJI2MDJU5uJoB03oA2gIR0DUSXh7BwdbdX2UKGgGR0CIVCMdcSoPaAdN6ANoCEdA1Enu4ZdfLXV9lChoBkdAjYhr8BMi8mgHTegDaAhHQNRKQy4J/od1fZQoaAZHQIonO25QP7NoB03oA2gIR0DUS5uAoXsPdX2UKGgGR0CKB/ozN2TxaAdN6ANoCEdA1Eud7Hhjv3V9lChoBkdAjrGpSaVlgGgHTegDaAhHQNRMDz8P4Eh1fZQoaAZHQJVLfF1jiGZoB03oA2gIR0DUTGr/DLr5dX2UKGgGR0CZK0P+4smOaAdN6ANoCEdA1E3FN9YwI3V9lChoBkdAiKM5GjKxLWgHTegDaAhHQNRNx5H3Del1fZQoaAZHQJEkbjkuHvdoB02JAmgIR0DUTdMJx//edX2UKGgGR0CWZsb/wRXfaAdN6ANoCEdA1E43mxMWXXV9lChoBkdAe1TcCHRCyGgHTegDaAhHQNRP3sgMc6x1fZQoaAZHQJ5KEhQm/nJoB03oA2gIR0DUT+Egow23dX2UKGgGR0CbQHs3hn8LaAdN6ANoCEdA1E/sSVW0Z3V9lChoBkdAm7ZSGzru6WgHTegDaAhHQNRQUU1Q66t1fZQoaAZHQJ36Ie0Xxe9oB03oA2gIR0DUUew/RmbtdX2UKGgGR0CcJAmxMWXUaAdN6ANoCEdA1FHu0DU3GXV9lChoBkdAm7YMN+b3GmgHTegDaAhHQNRR+r+tKZl1fZQoaAZHQJx61D9fkWBoB03oA2gIR0DUUmQh1TzedX2UKGgGR0B0+WMOwxFiaAdN6ANoCEdA1FQIS3b213V9lChoBkdAnNGTNIK+jGgHTegDaAhHQNRUCrIgeRx1fZQoaAZHQIvpqVGCqZNoB03oA2gIR0DUVBaZ1FH8dX2UKGgGR0CV+iZ9/jKgaAdN6ANoCEdA1FSLKPGQ0XV9lChoBkdAiRYnuRcNY2gHTegDaAhHQNRWLKy8jA11fZQoaAZHQJ6DhwGW2PVoB03oA2gIR0DUVi8LApKBdX2UKGgGR0CdPwGsmv4eaAdN6ANoCEdA1FY6JGe+VXV9lChoBkdAlnG4B/7SA2gHTegDaAhHQNRWn67iADt1fZQoaAZHQJxDyRnvlU9oB03oA2gIR0DUWDwSwnpjdX2UKGgGR0Cb/4uF6AvtaAdN6ANoCEdA1Fg+iA2AG3V9lChoBkdAm7Qx+fAbhmgHTegDaAhHQNRYSlxbSql1fZQoaAZHQJ2n5+CsfaJoB03oA2gIR0DUWK7xZuAJdX2UKGgGR0CdidGB4D9waAdN6ANoCEdA1FpHL/S6UnV9lChoBkdAnealuejEemgHTegDaAhHQNRaSaZ6Uqx1fZQoaAZHQJEbHL6k691oB03oA2gIR0DUWlb9cbBHdX2UKGgGR0CdTRuKXOW0aAdN6ANoCEdA1Fq+mrsByXVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
+ "_n_updates": 312500,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
76
  "ent_coef": 0.0,
77
  "vf_coef": 0.4,
78
  "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
  }
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:80fe4431eafdd9809d40ddc0f098e7c7d498eabd56e48876778d3035a1b4965c
3
- size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54045c00b81d62eca3f0851e04222a39c2ce28ff06b733ea04d0ae472adb8aff
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88509d6c1d265ecfc009c82c3aa5566e975f7a0852b181e99a1ee8dc02a550e2
3
- size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:745f443bfbd87f997c7b3ed82b1dda54dd5c892bbf7a501d8cb99e5d868c32e9
3
+ size 56766
a2c-AntBulletEnv-v0/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023
2
  - Python: 3.7.12
3
- - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.0
5
- - GPU Enabled: True
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023
2
  - Python: 3.7.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.13.0+cpu
5
+ - GPU Enabled: False
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x757b2a0f7d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x757b2a0f7dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x757b2a0f7e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x757b2a0f7ef0>", "_build": "<function ActorCriticPolicy._build at 0x757b2a0f7f80>", "forward": "<function ActorCriticPolicy.forward at 0x757b2a0fd050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x757b2a0fd0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x757b2a0fd170>", "_predict": "<function ActorCriticPolicy._predict at 0x757b2a0fd200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x757b2a0fd290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x757b2a0fd320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x757b2a0fd3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x757b2a0c07e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680812267624404841, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAe0lmv3Ffrb9UPou+OhVHv27/aj4jGHc90oS1u6UeA73BbFk/tG3HO190Br9/Kig8thOMPtkJtDwANQE/tM72PO+bxr0DaNA7x1EeP76+oD1bOHO/LweevAW2jb5C2kK9wuINP7eP/z4AYeA+jQ0+P73Me77Ofa8/rfFevtn0m74YTje/CPrAvsYNgL9X7To7D/0Pv032Gr783RK/QfyGPqsedD/fsN6+RyQBP0mGwjz4SqE/Hwbbv2JnWb+mHro/FbcFv7BSIz4fJjk/MMK7vcLiDT+3j/8+AGHgPkVqrL82iMS9PYfvv5N7wr8KEDu/L47tvumfjj4QQ+q//bKPvbSjj7+0kXU+gUcGv5mLib0Tlak/ZKV9u/ToAT/3uce6PhKzP4PMObt0f/O/Hh8ZvjGezz+9Rzc+6IFIP1RmFr7C4g0/t4//PgBh4D5Faqy/85oEvkYSX79HUYk+ZHpPvxhilj2QomA9AbX7voX5Zz4SZ4Q/aj/Fu9uOIL8Qo2i9feA9vt1Fw7zD4I8+nneCPeoRjz/1HRy8qMHwvlmi87sf7Z+/GL62OhPy6j6LuJE7wuINP7eP/z4AYeA+jQ0+P5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAOq0izYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAVXDA5AAAAACFp6b8AAAAAA/HbPQAAAADHsv8/AAAAAJ//7z0AAAAAxbPfPwAAAADGFi49AAAAAN4AAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9oMO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApRiLPQAAAADR5Py/AAAAAIZe0j0AAAAAibDhPwAAAACNbwy+AAAAALfH/j8AAAAAockPPgAAAABZ5Pi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAo3NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGCq7D0AAAAAmhXfvwAAAACPlRc9AAAAADCg3T8AAAAAaubavAAAAABlXds/AAAAAMO9C74AAAAATFXgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpZ/zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDaPYk8AAAAAEtvAMAAAAAAxZK2PQAAAACCpvc/AAAAAGKdDj4AAAAA8mMAQAAAAAD4sAG+AAAAAF7w/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIHhUtEofCCMAWyUTegDjAF0lEdAvsCMOXmeUnV9lChoBkdAhoxjMmnfmGgHTegDaAhHQL7As9GI9DB1fZQoaAZHQIcfW3fAKv5oB03oA2gIR0C+whRmoR7JdX2UKGgGR0CFbMHmA9V4aAdN6ANoCEdAvsUyP7vXsnV9lChoBkdAgHVG4qgAZWgHTegDaAhHQL7HW58BuGd1fZQoaAZHQIbVzS/j81poB03oA2gIR0C+x4AhW5pbdX2UKGgGR0CHLsqKgqVhaAdN6ANoCEdAvsiPmeUY9HV9lChoBkdAheqyKNyYHGgHTegDaAhHQL7LWLUTcqR1fZQoaAZHQIS597laKUFoB03oA2gIR0C+zZaJIlMRdX2UKGgGR0CGf9U/fO2RaAdN6ANoCEdAvs27QNTcZnV9lChoBkdAhLdycLBsRGgHTegDaAhHQL7Oy12aDwp1fZQoaAZHQIIHatxMnJFoB03oA2gIR0C+0ZM+V1OkdX2UKGgGR0CG19+ee4CqaAdN6ANoCEdAvtOxtXPqs3V9lChoBkdAh5PmucMEzWgHTegDaAhHQL7T1tQ9A5d1fZQoaAZHQITT3OKO1fFoB03oA2gIR0C+1OtAs053dX2UKGgGR0CD2rV6NVBEaAdN6ANoCEdAvtfWEi+tbXV9lChoBkdAhVzauwHJLmgHTegDaAhHQL7aAx0MgEF1fZQoaAZHQIbqXOD8LrpoB03oA2gIR0C+2ipNwiqydX2UKGgGR0CFuPLwF1SwaAdN6ANoCEdAvts9EhJRO3V9lChoBkdAhaZ+Jxeb/mgHTegDaAhHQL7eD9FWn0l1fZQoaAZHQILfQzzmOlxoB03oA2gIR0C+4DkOVgQZdX2UKGgGR0CHmKFnqVyFaAdN6ANoCEdAvuBdJXhfjXV9lChoBkdAhB2hJI1+AmgHTegDaAhHQL7hk8zQ/ot1fZQoaAZHQIdXau2Zy+9oB03oA2gIR0C+5Oduk1uSdX2UKGgGR0CGII+TvAoHaAdN6ANoCEdAvuc9rVOKwnV9lChoBkdAhpHdYfW+XmgHTegDaAhHQL7nY3n6l+F1fZQoaAZHQINXpUR3/xVoB03oA2gIR0C+6IBM36yjdX2UKGgGR0CH6E/QBxPwaAdN6ANoCEdAvutdPJq7AnV9lChoBkdAh0ciyhSLqGgHTegDaAhHQL7tk6asp5N1fZQoaAZHQIdAPE0iyIJoB03oA2gIR0C+7cKsySFHdX2UKGgGR0CHJqP+4smOaAdN6ANoCEdAvu7iAd4mkXV9lChoBkdAh5Tibc45tGgHTegDaAhHQL7xqqDbrTp1fZQoaAZHQIheKngpBopoB03oA2gIR0C+88ywwCbMdX2UKGgGR0CHDF6guh9LaAdN6ANoCEdAvvPx0YCQtHV9lChoBkdAiKZfDDTBqWgHTegDaAhHQL71ATVlPJt1fZQoaAZHQIN50qDsdDJoB03oA2gIR0C+9+Sad+XrdX2UKGgGR0CHs3qOcUdraAdN6ANoCEdAvvoe32EkB3V9lChoBkdAhTgnNHH3lGgHTegDaAhHQL76Q6tknTl1fZQoaAZHQIaZR0Syt3hoB03oA2gIR0C++1yFoL5RdX2UKGgGR0CD3FYwqRU4aAdN6ANoCEdAvv4lClabF3V9lChoBkdAhQJbTMJQcmgHTegDaAhHQL8AYhf0Eox1fZQoaAZHQIbRiO5rgwZoB03oA2gIR0C/AIt43WFwdX2UKGgGR0CEKyaWHDaXaAdN6ANoCEdAvwIXJW/8EXV9lChoBkdAh0s0uDjBEmgHTegDaAhHQL8FSB+F10V1fZQoaAZHQIYws1Gb1AZoB03oA2gIR0C/B2jwx33YdX2UKGgGR0CCr/tdAxBWaAdN6ANoCEdAvweNAKOT7nV9lChoBkdAhYOjgydnTWgHTegDaAhHQL8IpoE0SAZ1fZQoaAZHQIjLzVhCtzVoB03oA2gIR0C/C3LgTAWSdX2UKGgGR0CGlSO3DvVmaAdN6ANoCEdAvw2QQumJnHV9lChoBkdAglJQ6IWP92gHTegDaAhHQL8NtU34sVd1fZQoaAZHQIT5Sg00m+loB03oA2gIR0C/DtcVclgMdX2UKGgGR0CFvNcmBvrGaAdN6ANoCEdAvxG4pc5bQnV9lChoBkdAhL1FyimEXmgHTegDaAhHQL8T4olD4QB1fZQoaAZHQIOWfhOxjaxoB03oA2gIR0C/FAcW0qpcdX2UKGgGR0CB/IM5wOvuaAdN6ANoCEdAvxUaOKfnOnV9lChoBkdAgsaW8IzFdmgHTegDaAhHQL8X7ag26091fZQoaAZHQIRIa6vq1PZoB03oA2gIR0C/GjOOKfnPdX2UKGgGR0CE/Y7ihnJ1aAdN6ANoCEdAvxpcccU/OnV9lChoBkdAg6RfACW/rWgHTegDaAhHQL8bc9i+cpd1fZQoaAZHQIWRuHN5dGBoB03oA2gIR0C/HjW38XN1dX2UKGgGR0CF74szVMEiaAdN6ANoCEdAvyBrZCfHxXV9lChoBkdAhqxwjlgc+GgHTegDaAhHQL8gkNr0rbx1fZQoaAZHQIRtquB+WnloB03oA2gIR0C/IhRInSfEdX2UKGgGR0CBiB7di2DyaAdN6ANoCEdAvyVZQFcIJXV9lChoBkdAg5qWmgrYoWgHTegDaAhHQL8ngIaLn9x1fZQoaAZHQIXXs2rGR3hoB03oA2gIR0C/J6aIrOJMdX2UKGgGR0CGOJKZDzAfaAdN6ANoCEdAvyi728IzFnV9lChoBkdAirzflhgE2mgHTegDaAhHQL8rfOVgQYl1fZQoaAZHQIcDKAvtdAxoB03oA2gIR0C/LZTlkpZwdX2UKGgGR0CHlDAZ88cNaAdN6ANoCEdAvy26KNyYHHV9lChoBkdAhOnvR7Z392gHTegDaAhHQL8uzstkFwF1fZQoaAZHQINakqjJuEVoB03oA2gIR0C/MbYpH7P6dX2UKGgGR0CIwkPOpsGgaAdN6ANoCEdAvzPOKEWZZ3V9lChoBkdAhp3xs2vSt2gHTegDaAhHQL8z8oOx0Mh1fZQoaAZHQIiPTqv/zatoB03oA2gIR0C/NQZGax5cdX2UKGgGR0CE8q7ihnJ1aAdN6ANoCEdAvzfQqBmPHXV9lChoBkdAh+Pxe9i+c2gHTegDaAhHQL85+gXdj5N1fZQoaAZHQIQSao86mwdoB03oA2gIR0C/Oh67/XGwdX2UKGgGR0CHJeo4uK4yaAdN6ANoCEdAvztHbxmTT3V9lChoBkdAhuF8aOxSpGgHTegDaAhHQL8+EB19v0h1fZQoaAZHQIdLYp6QeV9oB03oA2gIR0C/QEPXsgMddX2UKGgGR0B+3sPZqVQiaAdN6ANoCEdAv0BoQBgeBHV9lChoBkdAgjJ1GLDQ7mgHTegDaAhHQL9CDk7Omix1fZQoaAZHQIYdCB3A2ydoB03oA2gIR0C/RO8xj8UFdX2UKGgGR0CFitmgam4zaAdN6ANoCEdAv0cwdhiLEXV9lChoBkdAhjs70e2d/mgHTegDaAhHQL9HVUuL7411fZQoaAZHQIQ6l+RYA81oB03oA2gIR0C/SGg7gbZOdX2UKGgGR0CI0RI7vG6xaAdN6ANoCEdAv0sqbiIcinV9lChoBkdAhNyvYFqzq2gHTegDaAhHQL9NRKArhBJ1fZQoaAZHQIOHSbjLjghoB03oA2gIR0C/TWm5c1O1dX2UKGgGR0CBGO2qkuYhaAdN6ANoCEdAv057AWSEDnV9lChoBkdAg7dzyauwHWgHTegDaAhHQL9RaE7GNrF1fZQoaAZHQIMIxmqYJE9oB03oA2gIR0C/U4FVYISldX2UKGgGR0CIcgiEg4ffaAdN6ANoCEdAv1Ol0xM363V9lChoBkdAh5Pw2dd3S2gHTegDaAhHQL9Uujafzz51fZQoaAZHQIPoO2d/axpoB03oA2gIR0C/V5NWU8msdX2UKGgGR0CElLy+Yc//aAdN6ANoCEdAv1m0D/2kBXV9lChoBkdAg6HWBJ7LMmgHTegDaAhHQL9Z2O9WZJF1fZQoaAZHQIdPYblzU7VoB03oA2gIR0C/Wu7cGkeqdX2UKGgGR0CGCmdd3SrpaAdN6ANoCEdAv14EKlYU4HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 25 11:28:03 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x76e765017dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x76e765017e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x76e765017ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x76e765017f80>", "_build": "<function ActorCriticPolicy._build at 0x76e76501d050>", "forward": "<function ActorCriticPolicy.forward at 0x76e76501d0e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x76e76501d170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x76e76501d200>", "_predict": "<function ActorCriticPolicy._predict at 0x76e76501d290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x76e76501d320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x76e76501d3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x76e76501d440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x76e764f69a20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 10000000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681356149311403557, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAG45Lvwt59DsvUfs+SzPOPu/os7/e04q/SnAqv6r8ij9LpxM+UiR3vzJfgr+LaB7A0PeIv1wugz4G8Yg+S8piPz+EGr/pHPI+dWMZv2dsLsDheWQ8rgnhPs62Tr1/Mso/0Yhev3RTSD9q9ui/iX9av3REjD4ItT6/50XZPqtmMD+ioZy9sfVpP+7LLb/uKpY+KHVDv+VXq73OGUI+QbwiP6pXJz/WubC/53kaP536b75RoBO+lDCAvyD5lL+o74Q/8OgpvxgBaTyWjby+qUoLwMY/kz/IkqO/ZagMP4l/Wr890Eo+orQKP0CrnT5RYDc+TtuXP7hc5r7klaa+PzuwPi2OAz8584a8jWRkv/UH9zmVTVM/ZiemPx9pqb7GdSA/QB4fP66y1T977Gq/+6Q8v8S7xT1lseg9znBMP9EBTz7RiF6/dFNIP2WoDD8e+JU/SOg4PvXNhz91Aay9v7S9PtLKpD8leJC+TvNtvyxpJz6Foec9yC55vl5MT7+kcYU/SbWHP0VAdj78Ueo+chUmv7n4mz8b786+F1/Ev4ubFr9s1y6/XE7rPSHAoT+ebwG/0Yhev3RTSD9q9ui/HviVP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADIrTrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBaX/G8AAAAADg6478AAAAA88/ZPAAAAADQv/Y/AAAAAAOhar0AAAAAJePkPwAAAAB0c/49AAAAAIp+3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATC/C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQeGiPAAAAABJhty/AAAAAEiup70AAAAAXt3zPwAAAAB0Apy9AAAAACKk+D8AAAAANx/+PQAAAAB/EgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYiLANQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDWkkT0AAAAAancAwAAAAADWIQA+AAAAAJZ/3z8AAAAA+cZKvQAAAABvwOk/AAAAACT6Sr0AAAAAtU7jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGnOxDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBw1GM9AAAAACiB8r8AAAAA/HXTPQAAAACqNuE/AAAAAJAWAT4AAAAAcfrvPwAAAAD1Tdk9AAAAAPay4r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ1HwdT5wfiMAWyUTegDjAF0lEdA1Cc/rvsqrnV9lChoBkdAk/KcYyfthWgHTegDaAhHQNQoDL7TDwZ1fZQoaAZHQIWAbcGkep5oB03oA2gIR0DUKBUrwvxpdX2UKGgGR0CS9cI1cdHUaAdN6ANoCEdA1CkjIY3vQXV9lChoBkdAjFfcDjin52gHTegDaAhHQNQpanQtz0Z1fZQoaAZHQJWdQwFkhA5oB03oA2gIR0DUKjRFYuCgdX2UKGgGR0CNTcrf+CK8aAdN6ANoCEdA1Co8OfNA1XV9lChoBkdAjgUGRmseXGgHTegDaAhHQNQrPKN6w+t1fZQoaAZHQI5HDt1IRRNoB03oA2gIR0DUK4RnYg7pdX2UKGgGR0CDq0q4H5aeaAdN6ANoCEdA1CxR9+w1SHV9lChoBkdAkZKKcmShamgHTegDaAhHQNQsWgwCbMJ1fZQoaAZHQItA7KNhmXhoB03oA2gIR0DULW1nlGPQdX2UKGgGR0CGmf9srNGFaAdN6ANoCEdA1C21lgtvoHV9lChoBkdAj+qVQyhzvWgHTegDaAhHQNQuiG5MDfZ1fZQoaAZHQIxh1fmcOLBoB03oA2gIR0DULpBt3wCsdX2UKGgGR0CLoTNg0CRwaAdN6ANoCEdA1C+WNMoMKHV9lChoBkdAiAqBYvFm4GgHTegDaAhHQNQv38RDkU91fZQoaAZHQIYRw1JlJ6JoB03oA2gIR0DUMK784xUOdX2UKGgGR0CVJlQhOgxraAdN6ANoCEdA1DC3I55qunV9lChoBkdAiPQt/OMVDmgHTegDaAhHQNQxw9/e+Eh1fZQoaAZHQIf2PJgb6xhoB03oA2gIR0DUMgu//NqydX2UKGgGR0Ca3BLbpNbkaAdN6ANoCEdA1DLbvHcUNHV9lChoBkdAg0pd5prULGgHTegDaAhHQNQy5DtTkyV1fZQoaAZHQIghRIre67NoB03oA2gIR0DUM/ayzHCGdX2UKGgGR0CGbALb5/LDaAdN6ANoCEdA1DRBhfBvaXV9lChoBkdAggdKDTSb6WgHTegDaAhHQNQ1KqNdZ7p1fZQoaAZHQKAlOi+tbLVoB03oA2gIR0DUNTKUjcEedX2UKGgGR0B+fZP0qYqoaAdN6ANoCEdA1DY1lIVdonV9lChoBkdAk0qnKji4rmgHTegDaAhHQNQ2f7+cYqJ1fZQoaAZHQJ6dC0PYnOVoB03oA2gIR0DUN0q+36RAdX2UKGgGR0CM+E4tHxz8aAdN6ANoCEdA1DdSpj+aSnV9lChoBkdAm6gaWPcSG2gHTegDaAhHQNQ4TSMxXXB1fZQoaAZHQJQOz20zCUJoB03oA2gIR0DUOJPnlnyvdX2UKGgGR0CQFOrKeTV2aAdN6ANoCEdA1Dlh9CeEqXV9lChoBkdAlBUhxkupTGgHTegDaAhHQNQ5ahYeT3Z1fZQoaAZHQJzH02P1ct5oB03oA2gIR0DUOnJ+vyLAdX2UKGgGR0CRhcVTrE9/aAdN6ANoCEdA1Dq5sdT5wnV9lChoBkdAh6ZUCq6vq2gHTegDaAhHQNQ7fpUPxx11fZQoaAZHQJ1L8Rh+fAdoB03oA2gIR0DUO4bOcDr7dX2UKGgGR0CThZ7ZFocraAdN6ANoCEdA1DyC0+1SfnV9lChoBkdAlLv2pIczZmgHTegDaAhHQNQ8zQCKaXt1fZQoaAZHQI63NYOlO45oB01kAmgIR0DUPM9+iJwbdX2UKGgGR0CYudv0RODbaAdN6ANoCEdA1D2bXg9/0HV9lChoBkdAkWOQ8GLUC2gHTegDaAhHQNQ+o0Syt3h1fZQoaAZHQJXnMUypJf9oB03oA2gIR0DUPuzIhhYvdX2UKGgGR0CS3QT7VJ+VaAdN6ANoCEdA1D7vbY9PlHV9lChoBkdAkf4UQ9RrJ2gHTegDaAhHQNQ/vgvlEJB1fZQoaAZHQIoymWUr08NoB03oA2gIR0DUQMb0K7ZndX2UKGgGR0Cb0IAKfFrEaAdN6ANoCEdA1EEOYmsvI3V9lChoBkdAluyjZHuqm2gHTegDaAhHQNRBEM9KVY91fZQoaAZHQJG8s8DB/I9oB03oA2gIR0DUQdv4WUKRdX2UKGgGR0CVlPWAwwj/aAdN6ANoCEdA1ELiCngpB3V9lChoBkdAmfJuVgQYk2gHTegDaAhHQNRDKmGEf1Z1fZQoaAZHQI/j3ukUKzBoB03oA2gIR0DUQyzjfek6dX2UKGgGR0CVWPsKsuFpaAdN6ANoCEdA1EPydat9yHV9lChoBkdAl6B3Sa3I/GgHTegDaAhHQNRE+9YbKih1fZQoaAZHQImAtZNfw7VoB03oA2gIR0DURUCrPt2LdX2UKGgGR0CafGjNpudgaAdN6ANoCEdA1EVDLWqcVnV9lChoBkdAlS0WvW6K+GgHTegDaAhHQNRGCIQvpQl1fZQoaAZHQJWsqEug6EJoB03oA2gIR0DURw75dnkDdX2UKGgGR0CQwQnhbW3CaAdN6ANoCEdA1EdYUqQRw3V9lChoBkdAlDcxC2MKkWgHTegDaAhHQNRHWsAWBSV1fZQoaAZHQID9Uju8brFoB01fAWgIR0DUR8s/nnuBdX2UKGgGR0CTi5hfShJzaAdN6ANoCEdA1EgfQDV6NXV9lChoBkdAhixOtGNJe2gHTegDaAhHQNRJdfJ/5L11fZQoaAZHQJI2MDJU5uJoB03oA2gIR0DUSXh7BwdbdX2UKGgGR0CIVCMdcSoPaAdN6ANoCEdA1Enu4ZdfLXV9lChoBkdAjYhr8BMi8mgHTegDaAhHQNRKQy4J/od1fZQoaAZHQIonO25QP7NoB03oA2gIR0DUS5uAoXsPdX2UKGgGR0CKB/ozN2TxaAdN6ANoCEdA1Eud7Hhjv3V9lChoBkdAjrGpSaVlgGgHTegDaAhHQNRMDz8P4Eh1fZQoaAZHQJVLfF1jiGZoB03oA2gIR0DUTGr/DLr5dX2UKGgGR0CZK0P+4smOaAdN6ANoCEdA1E3FN9YwI3V9lChoBkdAiKM5GjKxLWgHTegDaAhHQNRNx5H3Del1fZQoaAZHQJEkbjkuHvdoB02JAmgIR0DUTdMJx//edX2UKGgGR0CWZsb/wRXfaAdN6ANoCEdA1E43mxMWXXV9lChoBkdAe1TcCHRCyGgHTegDaAhHQNRP3sgMc6x1fZQoaAZHQJ5KEhQm/nJoB03oA2gIR0DUT+Egow23dX2UKGgGR0CbQHs3hn8LaAdN6ANoCEdA1E/sSVW0Z3V9lChoBkdAm7ZSGzru6WgHTegDaAhHQNRQUU1Q66t1fZQoaAZHQJ36Ie0Xxe9oB03oA2gIR0DUUew/RmbtdX2UKGgGR0CcJAmxMWXUaAdN6ANoCEdA1FHu0DU3GXV9lChoBkdAm7YMN+b3GmgHTegDaAhHQNRR+r+tKZl1fZQoaAZHQJx61D9fkWBoB03oA2gIR0DUUmQh1TzedX2UKGgGR0B0+WMOwxFiaAdN6ANoCEdA1FQIS3b213V9lChoBkdAnNGTNIK+jGgHTegDaAhHQNRUCrIgeRx1fZQoaAZHQIvpqVGCqZNoB03oA2gIR0DUVBaZ1FH8dX2UKGgGR0CV+iZ9/jKgaAdN6ANoCEdA1FSLKPGQ0XV9lChoBkdAiRYnuRcNY2gHTegDaAhHQNRWLKy8jA11fZQoaAZHQJ6DhwGW2PVoB03oA2gIR0DUVi8LApKBdX2UKGgGR0CdPwGsmv4eaAdN6ANoCEdA1FY6JGe+VXV9lChoBkdAlnG4B/7SA2gHTegDaAhHQNRWn67iADt1fZQoaAZHQJxDyRnvlU9oB03oA2gIR0DUWDwSwnpjdX2UKGgGR0Cb/4uF6AvtaAdN6ANoCEdA1Fg+iA2AG3V9lChoBkdAm7Qx+fAbhmgHTegDaAhHQNRYSlxbSql1fZQoaAZHQJ2n5+CsfaJoB03oA2gIR0DUWK7xZuAJdX2UKGgGR0CdidGB4D9waAdN6ANoCEdA1FpHL/S6UnV9lChoBkdAnealuejEemgHTegDaAhHQNRaSaZ6Uqx1fZQoaAZHQJEbHL6k691oB03oA2gIR0DUWlb9cbBHdX2UKGgGR0CdTRuKXOW0aAdN6ANoCEdA1Fq+mrsByXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f89c8e6a3685309395146dbf2ef83b691cadca83e52d0773a4da18705f1a29b4
3
- size 305208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d06d18cf10ffa0a1ff1f32c87031253ba9d065f320ee821634702d4243a62336
3
+ size 1063057
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 626.4061678627583, "std_reward": 151.92508237195705, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T22:32:16.457277"}
 
1
+ {"mean_reward": 1547.7872038712958, "std_reward": 402.720690456996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T09:10:44.651055"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5cb6f448fe99935a7eac21f62c4c6168668c1ea0a8704199f324fe4696976cb1
3
- size 2371
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706d6d2a3b407d8bf4656708944919834b7649c6db50998d76e08c24bdafb882
3
+ size 2412