File size: 2,067 Bytes
7c65c42 10a8a97 7c65c42 10a8a97 0e981c7 10a8a97 e2cf457 10a8a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: apache-2.0
language:
- en
library_name: transformers
datasets:
- budecosystem/intellecta
---
<div align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/boomer/main/assets/boomer-logo.png" width=200></div>
<p align="center"><i>Democratizing access to LLMs for the open-source community.<br>Let's advance AI, together. </i></p>
----
## Introduction 🎉
We are open-sourcing one of our early experiments of <a href="https://arxiv.org/abs/2402.17764"> BitNet b1.58</a> paper. This 634m parameter model is pre-trained from scratch using a custom synthetic dataset of 5B tokens. The model's architecture experiments contain the modification of using higher depth and shallow configuration
## Run the model
Please note that, at the moment, `trust_remote_code=True` is required for running the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("budecosystem/boomer-bitnet-634m",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("budecosystem/boomer-bitnet-634m")
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
print(tokenizer.batch_decode(outputs))
```
## Evaluations
We have evaluated the pre-trained model on few of the benchmarks
| Model Name | ARC | MMLU | Winogrande | Hellaswag | MathQA | GSM8K |
|:----------:|:--------:|:----:|:----------:|:---------:|:-----: |:----:|
| boomer-bitnet-634m | 26.19 | 25.23 | 51.07 | 34.08 | 23.38 | 0.91 |
### Final thought on Boomer!
This isn't the end. It's just the beginning of a journey towards creating more advanced, more efficient, and more accessible language models. We invite you to join us on this exciting journey.
### Aknowledgements
We'd like to thank the open-source community and the researchers whose foundational work laid the path for BOOMER. Special shoutout to team who published BitNet b1.58 paper. |