bullerwins commited on
Commit
0cf46b5
1 Parent(s): a6f454c

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -8,18 +8,187 @@ language:
8
  - hi
9
  - es
10
  - th
 
 
11
  pipeline_tag: text-generation
12
  tags:
13
  - facebook
14
  - meta
 
15
  - llama
16
  - llama-3
17
- license: llama3.1
18
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ---
20
 
21
- Exl2 quant version using exllamav2 dev branch to fix RoPE
22
-
23
  ## Model Information
24
 
25
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
@@ -155,6 +324,52 @@ print(outputs[0]["generated_text"][-1])
155
 
156
  Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  ### Use with `llama`
159
 
160
  Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
 
8
  - hi
9
  - es
10
  - th
11
+ license: llama3.1
12
+ base_model: meta-llama/Meta-Llama-3.1-8B
13
  pipeline_tag: text-generation
14
  tags:
15
  - facebook
16
  - meta
17
+ - pytorch
18
  - llama
19
  - llama-3
20
+ extra_gated_prompt: "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version\
21
+ \ Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for\
22
+ \ use, reproduction, distribution and modification of the Llama Materials set forth\
23
+ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\
24
+ \ accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\
25
+ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\
26
+ \ (if you are entering into this Agreement on such person or entity’s behalf), of\
27
+ \ the age required under applicable laws, rules or regulations to provide legal\
28
+ \ consent and that has legal authority to bind your employer or such other person\
29
+ \ or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\"\
30
+ \ means the foundational large language models and software and algorithms, including\
31
+ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\
32
+ \ code, fine-tuning enabling code and other elements of the foregoing distributed\
33
+ \ by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means,\
34
+ \ collectively, Meta’s proprietary Llama 3.1 and Documentation (and any portion\
35
+ \ thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms\
36
+ \ Ireland Limited (if you are located in or, if you are an entity, your principal\
37
+ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you\
38
+ \ are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\n\
39
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\
40
+ \ and royalty-free limited license under Meta’s intellectual property or other rights\
41
+ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy,\
42
+ \ create derivative works of, and make modifications to the Llama Materials.\nb.\
43
+ \ Redistribution and Use.\ni. If you distribute or make available the Llama Materials\
44
+ \ (or any derivative works thereof), or a product or service (including another\
45
+ \ AI model) that contains any of them, you shall (A) provide a copy of this Agreement\
46
+ \ with any such Llama Materials; and (B) prominently display “Built with Llama”\
47
+ \ on a related website, user interface, blogpost, about page, or product documentation.\
48
+ \ If you use the Llama Materials or any outputs or results of the Llama Materials\
49
+ \ to create, train, fine tune, or otherwise improve an AI model, which is distributed\
50
+ \ or made available, you shall also include “Llama” at the beginning of any such\
51
+ \ AI model name.\nii. If you receive Llama Materials, or any derivative works thereof,\
52
+ \ from a Licensee as part of an integrated end user product, then Section 2 of\
53
+ \ this Agreement will not apply to you.\niii. You must retain in all copies of the\
54
+ \ Llama Materials that you distribute the following attribution notice within a\
55
+ \ “Notice” text file distributed as a part of such copies: “Llama 3.1 is licensed\
56
+ \ under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc. All Rights\
57
+ \ Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws\
58
+ \ and regulations (including trade compliance laws and regulations) and adhere to\
59
+ \ the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy),\
60
+ \ which is hereby incorporated by reference into this Agreement.\n2. Additional\
61
+ \ Commercial Terms. If, on the Llama 3.1 version release date, the monthly active\
62
+ \ users of the products or services made available by or for Licensee, or Licensee’s\
63
+ \ affiliates, is greater than 700 million monthly active users in the preceding\
64
+ \ calendar month, you must request a license from Meta, which Meta may grant to\
65
+ \ you in its sole discretion, and you are not authorized to exercise any of the\
66
+ \ rights under this Agreement unless or until Meta otherwise expressly grants you\
67
+ \ such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE\
68
+ \ LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS”\
69
+ \ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY\
70
+ \ KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES\
71
+ \ OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.\
72
+ \ YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING\
73
+ \ THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA\
74
+ \ MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT\
75
+ \ WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN\
76
+ \ CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS\
77
+ \ AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL,\
78
+ \ EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED\
79
+ \ OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No\
80
+ \ trademark licenses are granted under this Agreement, and in connection with the\
81
+ \ Llama Materials, neither Meta nor Licensee may use any name or mark owned by or\
82
+ \ associated with the other or any of its affiliates, except as required for reasonable\
83
+ \ and customary use in describing and redistributing the Llama Materials or as set\
84
+ \ forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the\
85
+ \ “Mark”) solely as required to comply with the last sentence of Section 1.b.i.\
86
+ \ You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/\
87
+ \ ). All goodwill arising out of your use of the Mark will inure to the benefit\
88
+ \ of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made\
89
+ \ by or for Meta, with respect to any derivative works and modifications of the\
90
+ \ Llama Materials that are made by you, as between you and Meta, you are and will\
91
+ \ be the owner of such derivative works and modifications.\nc. If you institute\
92
+ \ litigation or other proceedings against Meta or any entity (including a cross-claim\
93
+ \ or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs\
94
+ \ or results, or any portion of any of the foregoing, constitutes infringement of\
95
+ \ intellectual property or other rights owned or licensable by you, then any licenses\
96
+ \ granted to you under this Agreement shall terminate as of the date such litigation\
97
+ \ or claim is filed or instituted. You will indemnify and hold harmless Meta from\
98
+ \ and against any claim by any third party arising out of or related to your use\
99
+ \ or distribution of the Llama Materials.\n6. Term and Termination. The term of\
100
+ \ this Agreement will commence upon your acceptance of this Agreement or access\
101
+ \ to the Llama Materials and will continue in full force and effect until terminated\
102
+ \ in accordance with the terms and conditions herein. Meta may terminate this Agreement\
103
+ \ if you are in breach of any term or condition of this Agreement. Upon termination\
104
+ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\
105
+ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\
106
+ \ and Jurisdiction. This Agreement will be governed and construed under the laws\
107
+ \ of the State of California without regard to choice of law principles, and the\
108
+ \ UN Convention on Contracts for the International Sale of Goods does not apply\
109
+ \ to this Agreement. The courts of California shall have exclusive jurisdiction\
110
+ \ of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\n\
111
+ Meta is committed to promoting safe and fair use of its tools and features, including\
112
+ \ Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy\
113
+ \ (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n\
114
+ #### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly.\
115
+ \ You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate\
116
+ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\
117
+ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\
118
+ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\
119
+ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\
120
+ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\
121
+ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\
122
+ \ illegal distribution of information or materials to minors, including obscene\
123
+ \ materials, or failure to employ legally required age-gating in connection with\
124
+ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\
125
+ \ other criminal activity\n 3. Engage in, promote, incite, or facilitate the\
126
+ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\
127
+ \ 4. Engage in, promote, incite, or facilitate discrimination or other unlawful\
128
+ \ or harmful conduct in the provision of employment, employment benefits, credit,\
129
+ \ housing, other economic benefits, or other essential goods and services\n 5.\
130
+ \ Engage in the unauthorized or unlicensed practice of any profession including,\
131
+ \ but not limited to, financial, legal, medical/health, or related professional\
132
+ \ practices\n 6. Collect, process, disclose, generate, or infer health, demographic,\
133
+ \ or other sensitive personal or private information about individuals without rights\
134
+ \ and consents required by applicable laws\n 7. Engage in or facilitate any action\
135
+ \ or generate any content that infringes, misappropriates, or otherwise violates\
136
+ \ any third-party rights, including the outputs or results of any products or services\
137
+ \ using the Llama Materials\n 8. Create, generate, or facilitate the creation\
138
+ \ of malicious code, malware, computer viruses or do anything else that could disable,\
139
+ \ overburden, interfere with or impair the proper working, integrity, operation\
140
+ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\
141
+ \ facilitate, or assist in the planning or development of activities that present\
142
+ \ a risk of death or bodily harm to individuals, including use of Llama 3.1 related\
143
+ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\
144
+ \ espionage, use for materials or activities that are subject to the International\
145
+ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\
146
+ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\
147
+ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\
148
+ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\
149
+ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\
150
+ \ content intended to incite or promote violence, abuse, or any infliction of bodily\
151
+ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\
152
+ \ of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering\
153
+ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\
154
+ \ or furthering defamatory content, including the creation of defamatory statements,\
155
+ \ images, or other content\n 3. Generating, promoting, or further distributing\
156
+ \ spam\n 4. Impersonating another individual without consent, authorization,\
157
+ \ or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n\
158
+ \ 6. Generating or facilitating false online engagement, including fake reviews\
159
+ \ and other means of fake online engagement\n4. Fail to appropriately disclose to\
160
+ \ end users any known dangers of your AI system\nPlease report any violation of\
161
+ \ this Policy, software “bug,” or other problems that could lead to a violation\
162
+ \ of this Policy through one of the following means:\n * Reporting issues with\
163
+ \ the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n\
164
+ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\
165
+ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\
166
+ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]"
167
+ extra_gated_fields:
168
+ First Name: text
169
+ Last Name: text
170
+ Date of birth: date_picker
171
+ Country: country
172
+ Affiliation: text
173
+ Job title:
174
+ type: select
175
+ options:
176
+ - Student
177
+ - Research Graduate
178
+ - AI researcher
179
+ - AI developer/engineer
180
+ - Reporter
181
+ - Other
182
+ geo: ip_location
183
+ ? By clicking Submit below I accept the terms of the license and acknowledge that
184
+ the information I provide will be collected stored processed and shared in accordance
185
+ with the Meta Privacy Policy
186
+ : checkbox
187
+ extra_gated_description: The information you provide will be collected, stored, processed
188
+ and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).
189
+ extra_gated_button_content: Submit
190
  ---
191
 
 
 
192
  ## Model Information
193
 
194
  The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
 
324
 
325
  Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
326
 
327
+ ### Tool use with transformers
328
+
329
+ LLaMA-3.1 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
330
+
331
+ Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
332
+ Here is a quick example showing a single simple tool:
333
+
334
+ ```python
335
+ # First, define a tool
336
+ def get_current_temperature(location: str) -> float:
337
+ """
338
+ Get the current temperature at a location.
339
+
340
+ Args:
341
+ location: The location to get the temperature for, in the format "City, Country"
342
+ Returns:
343
+ The current temperature at the specified location in the specified units, as a float.
344
+ """
345
+ return 22. # A real function should probably actually get the temperature!
346
+
347
+ # Next, create a chat and apply the chat template
348
+ messages = [
349
+ {"role": "system", "content": "You are a bot that responds to weather queries."},
350
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
351
+ ]
352
+
353
+ inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
354
+ ```
355
+
356
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
357
+
358
+ ```python
359
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
360
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
361
+ ```
362
+
363
+ and then call the tool and append the result, with the `tool` role, like so:
364
+
365
+ ```python
366
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
367
+ ```
368
+
369
+ After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
370
+ see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
371
+
372
+
373
  ### Use with `llama`
374
 
375
  Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
config.json CHANGED
@@ -37,7 +37,7 @@
37
  "vocab_size": 128256,
38
  "quantization_config": {
39
  "quant_method": "exl2",
40
- "version": "0.1.7",
41
  "bits": 8.0,
42
  "head_bits": 6,
43
  "calibration": {
 
37
  "vocab_size": 128256,
38
  "quantization_config": {
39
  "quant_method": "exl2",
40
+ "version": "0.1.9",
41
  "bits": 8.0,
42
  "head_bits": 6,
43
  "calibration": {
output.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:117d6f439e2482061da4cf65acd8aea850b9b4f73ea34d0e94ba221d2ed3b321
3
- size 8420608664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c9e1de031a0ee0d34e81db83caaa0cc1f02ba0e1f6d32271dd388dad6ae4973
3
+ size 8374843636
special_tokens_map.json CHANGED
@@ -1,4 +1,16 @@
1
  {
2
- "bos_token": "<|begin_of_text|>",
3
- "eos_token": "<|eot_id|>"
 
 
 
 
 
 
 
 
 
 
 
 
4
  }
 
1
  {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
  }
tokenizer.json CHANGED
@@ -2329,10 +2329,69 @@
2329
  ]
2330
  },
2331
  "post_processor": {
2332
- "type": "ByteLevel",
2333
- "add_prefix_space": true,
2334
- "trim_offsets": false,
2335
- "use_regex": true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336
  },
2337
  "decoder": {
2338
  "type": "ByteLevel",
 
2329
  ]
2330
  },
2331
  "post_processor": {
2332
+ "type": "Sequence",
2333
+ "processors": [
2334
+ {
2335
+ "type": "ByteLevel",
2336
+ "add_prefix_space": true,
2337
+ "trim_offsets": false,
2338
+ "use_regex": true
2339
+ },
2340
+ {
2341
+ "type": "TemplateProcessing",
2342
+ "single": [
2343
+ {
2344
+ "SpecialToken": {
2345
+ "id": "<|begin_of_text|>",
2346
+ "type_id": 0
2347
+ }
2348
+ },
2349
+ {
2350
+ "Sequence": {
2351
+ "id": "A",
2352
+ "type_id": 0
2353
+ }
2354
+ }
2355
+ ],
2356
+ "pair": [
2357
+ {
2358
+ "SpecialToken": {
2359
+ "id": "<|begin_of_text|>",
2360
+ "type_id": 0
2361
+ }
2362
+ },
2363
+ {
2364
+ "Sequence": {
2365
+ "id": "A",
2366
+ "type_id": 0
2367
+ }
2368
+ },
2369
+ {
2370
+ "SpecialToken": {
2371
+ "id": "<|begin_of_text|>",
2372
+ "type_id": 1
2373
+ }
2374
+ },
2375
+ {
2376
+ "Sequence": {
2377
+ "id": "B",
2378
+ "type_id": 1
2379
+ }
2380
+ }
2381
+ ],
2382
+ "special_tokens": {
2383
+ "<|begin_of_text|>": {
2384
+ "id": "<|begin_of_text|>",
2385
+ "ids": [
2386
+ 128000
2387
+ ],
2388
+ "tokens": [
2389
+ "<|begin_of_text|>"
2390
+ ]
2391
+ }
2392
+ }
2393
+ }
2394
+ ]
2395
  },
2396
  "decoder": {
2397
  "type": "ByteLevel",
tokenizer_config.json CHANGED
@@ -2050,7 +2050,7 @@
2050
  }
2051
  },
2052
  "bos_token": "<|begin_of_text|>",
2053
- "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
  "model_input_names": [
 
2050
  }
2051
  },
2052
  "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
  "model_input_names": [