File size: 1,736 Bytes
f313ade
9f9dfa0
 
f313ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9dfa0
f313ade
382a07c
 
 
 
 
f313ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382a07c
 
 
f313ade
 
 
 
cd16197
f313ade
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: digidaw
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# digidaw

This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8189
- Accuracy: 0.263
- Precision: 0.2245
- Recall: 0.2050
- F1: 0.1500

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.9065        | 1.0   | 156  | 3.2812          | 0.283    | 0.2470    | 0.2098 | 0.1605 |
| 0.5336        | 2.0   | 312  | 3.5014          | 0.269    | 0.2350    | 0.2056 | 0.1543 |
| 0.3071        | 3.0   | 468  | 3.8189          | 0.263    | 0.2245    | 0.2050 | 0.1500 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1