--- license: mit base_model: intfloat/multilingual-e5-small tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: digidawfinal2 results: [] --- # digidawfinal2 This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6325 - Accuracy: 0.826 - Precision: 0.4849 - Recall: 0.3920 - F1: 0.4038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.3648 | 1.0 | 157 | 0.7544 | 0.8 | 0.1481 | 0.1495 | 0.1451 | | 1.0523 | 2.0 | 314 | 0.7241 | 0.791 | 0.3328 | 0.3616 | 0.3064 | | 0.8635 | 3.0 | 471 | 0.6325 | 0.826 | 0.4849 | 0.3920 | 0.4038 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1