bwahyuh commited on
Commit
8b5c6ea
1 Parent(s): 409d444

Model save

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: intfloat/multilingual-e5-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: digidawfinal_E5small
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # digidawfinal_E5small
20
+
21
+ This model is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6421
24
+ - Accuracy: 0.809
25
+ - Precision: 0.3047
26
+ - Recall: 0.3371
27
+ - F1: 0.3118
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 1.3384 | 1.0 | 157 | 0.7615 | 0.803 | 0.1933 | 0.1749 | 0.1757 |
59
+ | 1.0082 | 2.0 | 314 | 0.6585 | 0.804 | 0.3053 | 0.3368 | 0.3102 |
60
+ | 0.8286 | 3.0 | 471 | 0.6421 | 0.809 | 0.3047 | 0.3371 | 0.3118 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.41.2
66
+ - Pytorch 2.3.0+cu121
67
+ - Datasets 2.20.0
68
+ - Tokenizers 0.19.1