bwahyuh commited on
Commit
bd2c020
1 Parent(s): 10fc31b

Training complete

Browse files
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: indolem/indobertweet-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: gemash
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # gemash
20
+
21
+ This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.4542
24
+ - Accuracy: 0.4187
25
+ - Precision: 0.0837
26
+ - Recall: 0.2
27
+ - F1: 0.1181
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 1.4445 | 1.0 | 148 | 1.4559 | 0.4187 | 0.0837 | 0.2 | 0.1181 |
59
+ | 1.431 | 2.0 | 296 | 1.4998 | 0.4187 | 0.0837 | 0.2 | 0.1181 |
60
+ | 1.4302 | 3.0 | 444 | 1.4606 | 0.4187 | 0.0837 | 0.2 | 0.1181 |
61
+ | 1.4292 | 4.0 | 592 | 1.4566 | 0.4187 | 0.0837 | 0.2 | 0.1181 |
62
+ | 1.4125 | 5.0 | 740 | 1.4542 | 0.4187 | 0.0837 | 0.2 | 0.1181 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.41.2
68
+ - Pytorch 2.3.0+cu121
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indolem/indobertweet-base-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_ids": 0,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "Kewajiban Iuran",
16
+ "1": "Manfaat Program",
17
+ "2": "Pengelolaan Dana Tapera",
18
+ "3": "Partisipasi dan Edukasi",
19
+ "4": "Dampak Ekonomi"
20
+ },
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 3072,
23
+ "label2id": {
24
+ "Dampak Ekonomi": 4,
25
+ "Kewajiban Iuran": 0,
26
+ "Manfaat Program": 1,
27
+ "Partisipasi dan Edukasi": 3,
28
+ "Pengelolaan Dana Tapera": 2
29
+ },
30
+ "layer_norm_eps": 1e-12,
31
+ "max_position_embeddings": 512,
32
+ "model_type": "bert",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "output_past": true,
36
+ "pad_token_id": 0,
37
+ "position_embedding_type": "absolute",
38
+ "problem_type": "single_label_classification",
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.41.2",
41
+ "type_vocab_size": 2,
42
+ "use_cache": true,
43
+ "vocab_size": 31923
44
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e214a5387b466231bb467989166414acd4e1d510e878d73968360eee9f832cc
3
+ size 442271748
runs/Jun27_10-46-17_c679f91ff766/events.out.tfevents.1719485178.c679f91ff766.1857.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3032ada9c3484340ae623ed91d5024c0d4643fd92fb19c261d704d256b48af
3
+ size 8962
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[MASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 128,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5e7cac2194759407e5070ce27e9f2bf9eaf9d7bfbe4e66ab5286b154332b5a5
3
+ size 5048
vocab.txt ADDED
The diff for this file is too large to render. See raw diff