--- license: apache-2.0 base_model: NicolasDenier/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: bwilkie-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- # bwilkie-finetuned-gtzan This model is a fine-tuned version of [NicolasDenier/distilhubert-finetuned-gtzan](https://huggingface.co/NicolasDenier/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3956 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2299 | 1.0 | 56 | 0.4532 | 0.86 | | 0.1206 | 1.99 | 112 | 0.3956 | 0.89 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3