File size: 11,947 Bytes
c4e9412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from rich.console import Console
from rich.markdown import Markdown
from rich.panel import Panel
from rich.progress import Progress
import time
import os
import json
from typing import List, Tuple, Dict, Optional
from dataclasses import dataclass, field
from datetime import datetime
import numpy as np
from threading import Lock
import gc
import logging
from contextlib import contextmanager
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('chat_system.log'),
logging.StreamHandler()
]
)
@dataclass
class ConversationTurn:
"""Represents a single turn in the conversation."""
role: str
content: str
timestamp: float = field(default_factory=time.time)
token_count: int = 0
class TokenManager:
"""Manages token counting and context window optimization."""
def __init__(self, tokenizer, max_context_tokens: int = 4096):
self.tokenizer = tokenizer
self.max_context_tokens = max_context_tokens
self._token_count_cache = {}
self.cache_lock = Lock()
def count_tokens(self, text: str) -> int:
"""Count tokens with caching for efficiency."""
with self.cache_lock:
if text not in self._token_count_cache:
tokens = self.tokenizer.encode(text, add_special_tokens=True)
self._token_count_cache[text] = len(tokens)
return self._token_count_cache[text]
def optimize_context(self, turns: List[ConversationTurn], max_turns: int = 10) -> List[ConversationTurn]:
"""Optimize context window while maintaining coherence."""
total_tokens = 0
optimized_turns = []
# Always include the last turn
if turns:
last_turn = turns[-1]
total_tokens += last_turn.token_count
optimized_turns.append(last_turn)
# Add previous turns while respecting token limit
for turn in reversed(turns[:-1]):
if total_tokens + turn.token_count > self.max_context_tokens:
break
if len(optimized_turns) >= max_turns:
break
total_tokens += turn.token_count
optimized_turns.insert(0, turn)
return optimized_turns
class ConversationManager:
"""Manages conversation state and history."""
def __init__(self, token_manager: TokenManager):
self.token_manager = token_manager
self.turns: List[ConversationTurn] = []
self.system_prompt = """You are a highly capable AI assistant with expertise in business and technical domains.
You provide detailed, well-reasoned responses while maintaining a professional tone.
Focus on delivering accurate, contextual information without repeating previous conversation details."""
self.system_tokens = token_manager.count_tokens(self.system_prompt)
def add_turn(self, role: str, content: str):
"""Add a new conversation turn with token counting."""
turn = ConversationTurn(
role=role,
content=content,
token_count=self.token_manager.count_tokens(content)
)
self.turns.append(turn)
def get_prompt(self, include_system: bool = True) -> str:
"""Generate optimized prompt for model input."""
optimized_turns = self.token_manager.optimize_context(self.turns)
components = []
if include_system:
components.append(f"System: {self.system_prompt}")
for turn in optimized_turns:
role_prefix = "Human" if turn.role == "user" else "Assistant"
components.append(f"{role_prefix}: {turn.content}")
return "\n\n".join(components)
class ResponseGenerator:
"""Handles model inference and response generation."""
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = next(model.parameters()).device
# Enhanced generation parameters
self.base_params = {
'do_sample': True,
'top_k': 50,
'top_p': 0.95,
'temperature': 0.8,
'repetition_penalty': 1.1,
'no_repeat_ngram_size': 4,
'num_beams': 2,
'early_stopping': True,
'length_penalty': 1.2,
'bad_words_ids': None,
'min_length': 10,
'use_cache': True,
}
@contextmanager
def inference_mode(self):
"""Context manager for inference optimization."""
torch.cuda.empty_cache()
gc.collect()
try:
with torch.inference_mode():
yield
finally:
torch.cuda.empty_cache()
gc.collect()
def calculate_dynamic_length(self, input_text: str, conversation_length: int) -> int:
"""Calculate dynamic response length based on input and conversation context."""
input_tokens = len(self.tokenizer.encode(input_text))
base_length = max(100, input_tokens * 2)
# Scale based on conversation complexity
complexity_factor = min(2.0, 1.0 + (conversation_length / 20))
dynamic_length = int(base_length * complexity_factor)
# Ensure length is within reasonable bounds
return min(max(dynamic_length, 100), 2048)
def generate_response(self, prompt: str, conversation_length: int) -> str:
"""Generate response with dynamic length and advanced parameters."""
with self.inference_mode():
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=4096
).to(self.device)
max_new_tokens = self.calculate_dynamic_length(prompt, conversation_length)
generation_params = {
**self.base_params,
'max_new_tokens': max_new_tokens,
'pad_token_id': self.tokenizer.pad_token_id,
'eos_token_id': self.tokenizer.eos_token_id,
}
outputs = self.model.generate(
**inputs,
**generation_params
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
response_parts = response.split("Assistant:")
if len(response_parts) > 1:
response = response_parts[-1].strip()
return response
class EnterpriseQwenChat:
"""Main chat interface with enterprise-grade features."""
def __init__(self, model_directory: str = "./qwen"):
self.console = Console()
self.model_directory = model_directory
self.setup_components()
def setup_components(self):
"""Initialize components with CUDA support."""
try:
self.console.print("Initializing Enterprise Qwen Chat...", style="bold yellow")
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with CUDA optimizations
config = AutoConfig.from_pretrained(os.path.join(self.model_directory, "config.json"))
self.model = AutoModelForCausalLM.from_pretrained(
self.model_directory,
config=config,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
)
# Move model to GPU if available
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
# Initialize managers
self.token_manager = TokenManager(self.tokenizer)
self.conversation_manager = ConversationManager(self.token_manager)
self.response_generator = ResponseGenerator(self.model, self.tokenizer)
self.console.print("[bold green]System initialized successfully![/bold green]")
except Exception as e:
logging.error(f"Initialization failed: {str(e)}")
raise
def save_conversation(self) -> str:
"""Save conversation with metadata."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f'conversation_{timestamp}.json'
conversation_data = {
'timestamp': timestamp,
'turns': [
{
'role': turn.role,
'content': turn.content,
'timestamp': turn.timestamp,
'token_count': turn.token_count
}
for turn in self.conversation_manager.turns
],
'metadata': {
'total_turns': len(self.conversation_manager.turns),
'total_tokens': sum(turn.token_count for turn in self.conversation_manager.turns)
}
}
with open(filename, 'w', encoding='utf-8') as f:
json.dump(conversation_data, f, indent=2)
return filename
def run(self):
"""Run the chat interface with enhanced features."""
self.console.print(Panel.fit(
"[bold green]Enterprise Qwen Chat System[/bold green]\n"
"[italic]Commands:\n"
"- 'exit' or 'quit': End conversation\n"
"- 'save': Save conversation\n"
"- 'clear': Clear conversation history[/italic]"
))
while True:
try:
user_input = self.console.input("[bold cyan]You:[/bold cyan] ").strip()
if user_input.lower() in ['exit', 'quit']:
log_file = self.save_conversation()
self.console.print(f"Conversation saved to: {log_file}", style="bold green")
break
if user_input.lower() == 'save':
log_file = self.save_conversation()
self.console.print(f"Conversation saved to: {log_file}", style="bold green")
continue
if user_input.lower() == 'clear':
self.conversation_manager.turns.clear()
self.console.print("Conversation history cleared.", style="bold yellow")
continue
# Process user input
self.conversation_manager.add_turn("user", user_input)
# Generate and display response
with self.console.status("[bold yellow]Generating response...[/bold yellow]"):
start_time = time.time()
prompt = self.conversation_manager.get_prompt()
response = self.response_generator.generate_response(
prompt,
len(self.conversation_manager.turns)
)
self.conversation_manager.add_turn("assistant", response)
end_time = time.time()
self.console.print(Markdown(f"**AI:** {response}"))
self.console.print(
f"[italic grey](Generated in {end_time - start_time:.2f} seconds)[/italic grey]\n"
)
except KeyboardInterrupt:
self.console.print("\nGracefully shutting down...", style="bold yellow")
self.save_conversation()
break
except Exception as e:
logging.error(f"Error during chat: {str(e)}")
self.console.print(
"[bold red]An error occurred. The conversation has been saved.[/bold red]"
)
self.save_conversation()
break
if __name__ == "__main__":
chat = EnterpriseQwenChat()
chat.run()
|