Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "id"
|
3 |
+
license: "mit"
|
4 |
+
datasets:
|
5 |
+
- Indonesian Wikipedia
|
6 |
+
- id_newspapers_2018
|
7 |
+
widget:
|
8 |
+
- text: "Ibu ku sedang bekerja [MASK] supermarket."
|
9 |
+
---
|
10 |
+
|
11 |
+
# Indonesian BERT base model (uncased)
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This
|
15 |
+
model is uncased.
|
16 |
+
|
17 |
+
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
18 |
+
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
19 |
+
|
20 |
+
## Intended uses & limitations
|
21 |
+
|
22 |
+
### How to use
|
23 |
+
You can use this model directly with a pipeline for masked language modeling:
|
24 |
+
```python
|
25 |
+
>>> from transformers import pipeline
|
26 |
+
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-1.5G')
|
27 |
+
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket")
|
28 |
+
|
29 |
+
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]',
|
30 |
+
'score': 0.7983310222625732,
|
31 |
+
'token': 1495},
|
32 |
+
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]',
|
33 |
+
'score': 0.090003103017807,
|
34 |
+
'token': 17},
|
35 |
+
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]',
|
36 |
+
'score': 0.025469014421105385,
|
37 |
+
'token': 1600},
|
38 |
+
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]',
|
39 |
+
'score': 0.017966199666261673,
|
40 |
+
'token': 1555},
|
41 |
+
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]',
|
42 |
+
'score': 0.016971781849861145,
|
43 |
+
'token': 1572}]
|
44 |
+
```
|
45 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
46 |
+
```python
|
47 |
+
from transformers import BertTokenizer, BertModel
|
48 |
+
|
49 |
+
model_name='cahya/bert-base-indonesian-1.5G'
|
50 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
51 |
+
model = BertModel.from_pretrained(model_name)
|
52 |
+
text = "Silakan diganti dengan text apa saja."
|
53 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
54 |
+
output = model(**encoded_input)
|
55 |
+
```
|
56 |
+
and in Tensorflow:
|
57 |
+
```python
|
58 |
+
from transformers import BertTokenizer, TFBertModel
|
59 |
+
|
60 |
+
model_name='cahya/bert-base-indonesian-1.5G'
|
61 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
62 |
+
model = TFBertModel.from_pretrained(model_name)
|
63 |
+
text = "Silakan diganti dengan text apa saja."
|
64 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
65 |
+
output = model(encoded_input)
|
66 |
+
```
|
67 |
+
|
68 |
+
## Training data
|
69 |
+
|
70 |
+
This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of
|
71 |
+
[indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018).
|
72 |
+
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
|
73 |
+
then of the form:
|
74 |
+
|
75 |
+
```[CLS] Sentence A [SEP] Sentence B [SEP]```
|