Update README.md
Browse files
README.md
CHANGED
@@ -45,12 +45,17 @@ test_dataset = load_dataset("common_voice", "br", split="test[:2%]")
|
|
45 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
46 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
47 |
|
48 |
-
|
49 |
|
50 |
# Preprocessing the datasets.
|
51 |
# We need to read the aduio files as arrays
|
52 |
def speech_file_to_array_fn(batch):
|
|
|
|
|
|
|
|
|
53 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
54 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
55 |
return batch
|
56 |
|
@@ -85,15 +90,17 @@ processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton"
|
|
85 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
86 |
model.to("cuda")
|
87 |
|
88 |
-
chars_to_ignore_regex = '[
|
89 |
-
|
90 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
91 |
|
92 |
# Preprocessing the datasets.
|
93 |
# We need to read the aduio files as arrays
|
94 |
def speech_file_to_array_fn(batch):
|
95 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
|
|
|
|
|
|
96 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
97 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
98 |
return batch
|
99 |
|
|
|
45 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
46 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
47 |
|
48 |
+
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
|
49 |
|
50 |
# Preprocessing the datasets.
|
51 |
# We need to read the aduio files as arrays
|
52 |
def speech_file_to_array_fn(batch):
|
53 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
54 |
+
batch["sentence"] = batch["sentence"].replace("ʼ", "'")
|
55 |
+
batch["sentence"] = batch["sentence"].replace("’", "'")
|
56 |
+
batch["sentence"] = batch["sentence"].replace('‘', "'")
|
57 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
|
59 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
60 |
return batch
|
61 |
|
|
|
90 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
|
91 |
model.to("cuda")
|
92 |
|
93 |
+
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
|
|
|
|
|
94 |
|
95 |
# Preprocessing the datasets.
|
96 |
# We need to read the aduio files as arrays
|
97 |
def speech_file_to_array_fn(batch):
|
98 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
99 |
+
batch["sentence"] = batch["sentence"].replace("ʼ", "'")
|
100 |
+
batch["sentence"] = batch["sentence"].replace("’", "'")
|
101 |
+
batch["sentence"] = batch["sentence"].replace('‘', "'")
|
102 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
103 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
|
104 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
105 |
return batch
|
106 |
|