cahya commited on
Commit
56789be
1 Parent(s): fbb9224

updated the chars and tab

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -85,31 +85,31 @@ processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indones
85
  model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
86
  model.to("cuda")
87
 
88
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\'\\”]'
89
 
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
97
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
98
- \treturn batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
- \twith torch.no_grad():
108
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
  pred_ids = torch.argmax(logits, dim=-1)
111
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
112
- \treturn batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
 
@@ -123,4 +123,4 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
123
  The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
124
 
125
  The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
126
- (will be available soon)
 
85
  model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
86
  model.to("cuda")
87
 
88
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'
89
 
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
97
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
98
+ return batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
+ with torch.no_grad():
108
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
  pred_ids = torch.argmax(logits, dim=-1)
111
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
112
+ return batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
 
 
123
  The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
124
 
125
  The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
126
+ (will be available soon)