calcpy commited on
Commit
c0ec05c
1 Parent(s): 45e9a9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -1
README.md CHANGED
@@ -9,9 +9,20 @@ tags:
9
  license: apache-2.0
10
  language:
11
  - en
 
 
 
 
 
 
12
  ---
13
 
14
- # Uploaded model
 
 
 
 
 
15
 
16
  - **Developed by:** calcpy
17
  - **License:** apache-2.0
@@ -20,3 +31,73 @@ language:
20
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
12
+ - sw
13
+ datasets:
14
+ - wikimedia/wikipedia
15
+ - Mollel/alpaca-swahili
16
+ - Mollel/swahili_pretrain_data
17
+ library_name: peft
18
  ---
19
 
20
+ # Model description
21
+
22
+ The model can be used for Swahili language generation, translation, and other NLP tasks, especially focused on the pretraining and fine-tuning domains.
23
+ It has been pre-trained and fine-tuned specifically for Swahili language tasks with the Unsloth framework.
24
+
25
+ This is a development version and it's not recommended for general use.
26
 
27
  - **Developed by:** calcpy
28
  - **License:** apache-2.0
 
31
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
32
 
33
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
34
+
35
+
36
+ ## Out-of-Scope Use
37
+
38
+ The model is not designed for tasks outside of the Swahili language
39
+ or tasks requiring highly factual precision in domains not covered by the training datasets.
40
+
41
+
42
+ ## Bias, Risks, and Limitations
43
+
44
+ The model inherits any potential biases present in the Swahili Wikipedia and Mollel's dataset. Users should be cautious when applying this model to sensitive applications.
45
+
46
+ ### Recommendations
47
+
48
+ Users should perform bias evaluations specific to their use case and ensure that any downstream applications consider potential ethical implications.
49
+
50
+ ## How to Get Started with the Model
51
+
52
+ Use the code below to get started with the model.
53
+
54
+ ```python
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+
57
+ # Load the model and tokenizer
58
+ model = AutoModelForCausalLM.from_pretrained("path_to_your_model")
59
+ tokenizer = AutoTokenizer.from_pretrained("path_to_your_model")
60
+
61
+ # Example inference
62
+ instruction = "Endelea mlolongo wa fibonacci:"
63
+ input_data = "1, 1, 2, 3, 5, 8,"
64
+ prompt = f"Chini ni maagizo ambayo yanaelezea kazi. Andika jibu ambalo linakamilisha ombi ipasavyo.\n### Maagizo:\n{instruction}\n\n{input_data}\n### Jibu:\n"
65
+
66
+ inputs = tokenizer([f"{prompt}"], return_tensors="pt").to("cuda")
67
+ outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
68
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
69
+ ```
70
+
71
+ In this example, the model generates the continuation of the Fibonacci sequence in Swahili.
72
+
73
+
74
+ ## Training Hyperparameters
75
+
76
+ - ** Training regime: Mixed precision (fp16/bf16)
77
+ - ** Batch size: 2 per device
78
+ - ** Max steps: 24,000 for pretraining, 1,200 for fine-tuning
79
+ - ** Learning rate: 5e-5 (1e-5 for embeddings)
80
+ - ** Warmup steps: 100 for pretraining, 10 for fine-tuning
81
+ - ** Weight decay: 0.01 (pretraining), 0.00 (fine-tuning)
82
+
83
+ ## Evaluation
84
+
85
+ The model was only manually evaluated on the Alpaca Swahili dataset for instruction-following capabilities.
86
+
87
+ ## Metrics
88
+
89
+ Evaluation metrics will be required for language generation quality and instruction-following precision.
90
+
91
+
92
+ ## Summary
93
+
94
+ This is a technical release of a small test model to test pre-training and fine-tuning on a single GPU.
95
+
96
+
97
+ ## Compute Infrastructure
98
+
99
+ - **OS** Ubuntu 22.04.5 LTS
100
+ - **Hardware Type:** NVIDIA GeForce RTX 4090 24 GiB
101
+ - **Hours used:** ~12 hours
102
+
103
+