calm-and-collected commited on
Commit
958fab0
1 Parent(s): cf6235a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -24
README.md CHANGED
@@ -11,9 +11,10 @@ tags:
11
  - vintage
12
  - postcard
13
  ---
14
- # Wish You Were Here - a 1.5 LORA for vintage postcard replication
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
 
17
 
18
  Wish you were here is a LORA model developped to create vintage postcard images. The model was trained on Stable Diffusion 1.5.
19
 
@@ -41,11 +42,19 @@ destinations. The model will also replicate damage seen in the images.
41
 
42
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
43
 
44
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
45
 
46
  ## How to Get Started with the Model
47
 
48
- Use the code below to get started with the model.
49
 
50
  [More Information Needed]
51
 
@@ -54,23 +63,128 @@ Use the code below to get started with the model.
54
  ### Training Data
55
 
56
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
57
-
58
- [More Information Needed]
59
-
60
- ### Training Procedure
61
-
62
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
63
-
64
- #### Preprocessing [optional]
65
-
66
- [More Information Needed]
67
-
68
-
69
- #### Training Hyperparameters
70
-
71
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
72
-
73
- ## Technical Specifications [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  #### Hardware
76
 
@@ -80,10 +194,6 @@ The model was trained on two GTX 4090 for a duration of 2 days to extract 100 ep
80
 
81
  The model was trained via the Kohya_SS gui.
82
 
83
- ## Citation [optional]
84
-
85
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
86
-
87
  ## Model Card Contact
88
 
89
  Use the community section of this repository to contact me.
 
11
  - vintage
12
  - postcard
13
  ---
14
+ # Wish You Were Here - a Stable diffusion 1.5 LORA for vintage postcard replication
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6537927953b7eb25ce03c962/d97rlp7IYnBcKPYQuCpBi.png)
18
 
19
  Wish you were here is a LORA model developped to create vintage postcard images. The model was trained on Stable Diffusion 1.5.
20
 
 
42
 
43
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
44
 
45
+ To use the WYWH model, use your favorite Stable Diffusion model (the recommended model is a realistic model) and use the LORA along with the following triggers:
46
+ - WYWH (the base trigger)
47
+ - Photograph (for photography postcards)
48
+ - Drawing (for drawn postcards)
49
+ - Damage (to add scratch and water damage to the generation)
50
+ - Monochrome (for black and white images)
51
+
52
+ For negatives, your can use the following:
53
+ - White border (if you do not want a white border)
54
 
55
  ## How to Get Started with the Model
56
 
57
+ You can use this model with [automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui), [comfyui](https://github.com/comfyanonymous/ComfyUI) and [sdnext](https://github.com/vladmandic/automatic).
58
 
59
  [More Information Needed]
60
 
 
63
  ### Training Data
64
 
65
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
66
+ The Wish You Were Here dataset consists out of ~650 images of postcards from 1900-1970.
67
+ Dataset: [origional dataset](https://huggingface.co/datasets/calm-and-collected/wish_you_were_here "The wish you were here dataset").
68
+
69
+ ### Training Hyperparameters
70
+
71
+ <details>
72
+ <summary>Kohya_SS paramaters</summary>
73
+ ```js
74
+ {
75
+ "LoRA_type": "Standard",
76
+ "adaptive_noise_scale": 0,
77
+ "additional_parameters": "",
78
+ "block_alphas": "",
79
+ "block_dims": "",
80
+ "block_lr_zero_threshold": "",
81
+ "bucket_no_upscale": true,
82
+ "bucket_reso_steps": 64,
83
+ "cache_latents": true,
84
+ "cache_latents_to_disk": true,
85
+ "caption_dropout_every_n_epochs": 0.0,
86
+ "caption_dropout_rate": 0,
87
+ "caption_extension": ".txt",
88
+ "clip_skip": 2,
89
+ "color_aug": false,
90
+ "conv_alpha": 1,
91
+ "conv_block_alphas": "",
92
+ "conv_block_dims": "",
93
+ "conv_dim": 1,
94
+ "decompose_both": false,
95
+ "dim_from_weights": false,
96
+ "down_lr_weight": "",
97
+ "enable_bucket": true,
98
+ "epoch": 1,
99
+ "factor": -1,
100
+ "flip_aug": false,
101
+ "full_bf16": false,
102
+ "full_fp16": false,
103
+ "gradient_accumulation_steps": 1,
104
+ "gradient_checkpointing": false,
105
+ "keep_tokens": "0",
106
+ "learning_rate": 0.0001,
107
+ "logging_dir": "/home/glow/Desktop/ml/whyw_logs",
108
+ "lora_network_weights": "",
109
+ "lr_scheduler": "constant",
110
+ "lr_scheduler_args": "",
111
+ "lr_scheduler_num_cycles": "",
112
+ "lr_scheduler_power": "",
113
+ "lr_warmup": 0,
114
+ "max_bucket_reso": 2048,
115
+ "max_data_loader_n_workers": "1",
116
+ "max_resolution": "512,650",
117
+ "max_timestep": 1000,
118
+ "max_token_length": "75",
119
+ "max_train_epochs": "100",
120
+ "max_train_steps": "",
121
+ "mem_eff_attn": true,
122
+ "mid_lr_weight": "",
123
+ "min_bucket_reso": 256,
124
+ "min_snr_gamma": 0,
125
+ "min_timestep": 0,
126
+ "mixed_precision": "bf16",
127
+ "model_list": "custom",
128
+ "module_dropout": 0.2,
129
+ "multires_noise_discount": 0.2,
130
+ "multires_noise_iterations": 8,
131
+ "network_alpha": 128,
132
+ "network_dim": 256,
133
+ "network_dropout": 0.3,
134
+ "no_token_padding": false,
135
+ "noise_offset": "0.05",
136
+ "noise_offset_type": "Multires",
137
+ "num_cpu_threads_per_process": 2,
138
+ "optimizer": "AdamW8bit",
139
+ "optimizer_args": "",
140
+ "output_dir": "/home/glow/Desktop/ml/whyw_logs/model_v2",
141
+ "output_name": "final_model",
142
+ "persistent_data_loader_workers": false,
143
+ "pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5",
144
+ "prior_loss_weight": 1.0,
145
+ "random_crop": false,
146
+ "rank_dropout": 0.2,
147
+ "reg_data_dir": "",
148
+ "resume": "",
149
+ "sample_every_n_epochs": 0,
150
+ "sample_every_n_steps": 0,
151
+ "sample_prompts": "",
152
+ "sample_sampler": "euler_a",
153
+ "save_every_n_epochs": 1,
154
+ "save_every_n_steps": 0,
155
+ "save_last_n_steps": 0,
156
+ "save_last_n_steps_state": 0,
157
+ "save_model_as": "safetensors",
158
+ "save_precision": "bf16",
159
+ "save_state": false,
160
+ "scale_v_pred_loss_like_noise_pred": false,
161
+ "scale_weight_norms": 1,
162
+ "sdxl": false,
163
+ "sdxl_cache_text_encoder_outputs": false,
164
+ "sdxl_no_half_vae": true,
165
+ "seed": "1234",
166
+ "shuffle_caption": false,
167
+ "stop_text_encoder_training": 1,
168
+ "text_encoder_lr": 5e-05,
169
+ "train_batch_size": 3,
170
+ "train_data_dir": "/home/glow/Desktop/wyhw",
171
+ "train_on_input": true,
172
+ "training_comment": "",
173
+ "unet_lr": 0.0001,
174
+ "unit": 1,
175
+ "up_lr_weight": "",
176
+ "use_cp": true,
177
+ "use_wandb": false,
178
+ "v2": false,
179
+ "v_parameterization": false,
180
+ "v_pred_like_loss": 0,
181
+ "vae_batch_size": 0,
182
+ "wandb_api_key": "",
183
+ "weighted_captions": false,
184
+ "xformers": "xformers"
185
+ }
186
+ ```
187
+ </details>
188
 
189
  #### Hardware
190
 
 
194
 
195
  The model was trained via the Kohya_SS gui.
196
 
 
 
 
 
197
  ## Model Card Contact
198
 
199
  Use the community section of this repository to contact me.