|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import PreTrainedModel, VisionTextDualEncoderConfig, VisionTextDualEncoderModel |
|
from transformers.models.vision_text_dual_encoder.modeling_vision_text_dual_encoder import clip_loss, CLIPOutput |
|
|
|
|
|
class MeanPooler(nn.Module): |
|
"""Mean pooling""" |
|
|
|
def forward(self, x, attention_mask): |
|
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1) |
|
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True) |
|
|
|
|
|
class OpenCLIPVisionTextDualEncoderModel(VisionTextDualEncoderModel): |
|
def __init__( |
|
self, |
|
config: Optional[VisionTextDualEncoderConfig] = None, |
|
vision_model: Optional[PreTrainedModel] = None, |
|
text_model: Optional[PreTrainedModel] = None, |
|
add_text_model_pooling_layer: bool = False, |
|
): |
|
super().__init__(config, vision_model, text_model) |
|
|
|
|
|
if not add_text_model_pooling_layer: |
|
self.text_model.pooler = None |
|
|
|
|
|
self.pooler = MeanPooler() |
|
|
|
hidden_size = (self.text_embed_dim + self.projection_dim) // 2 |
|
self.text_projection = nn.Sequential( |
|
nn.Linear(self.text_embed_dim, hidden_size, bias=False), |
|
nn.GELU(), |
|
nn.Linear(hidden_size, self.projection_dim, bias=False), |
|
) |
|
|
|
def get_text_features( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
token_type_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = self.pooler(text_outputs, attention_mask) |
|
text_features = self.text_projection(pooled_output) |
|
|
|
return text_features |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
return_loss: Optional[bool] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], CLIPOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.return_dict |
|
|
|
vision_outputs = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
text_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
image_embeds = vision_outputs[1] |
|
image_embeds = self.visual_projection(image_embeds) |
|
|
|
pooled_output = self.pooler(text_outputs, attention_mask) |
|
text_embeds = self.text_projection(pooled_output) |
|
|
|
|
|
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) |
|
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale |
|
logits_per_image = logits_per_text.T |
|
|
|
loss = None |
|
if return_loss: |
|
loss = clip_loss(logits_per_text) |
|
|
|
if not return_dict: |
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CLIPOutput( |
|
loss=loss, |
|
logits_per_image=logits_per_image, |
|
logits_per_text=logits_per_text, |
|
text_embeds=text_embeds, |
|
image_embeds=image_embeds, |
|
text_model_output=text_outputs, |
|
vision_model_output=vision_outputs, |
|
) |
|
|