File size: 14,725 Bytes
a123ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" KOSMOS-2 model configuration"""

import copy
import os
from typing import Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "microsoft/kosmos-2-patch14-224": (
        "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json"
    ),
    # See all KOSMOS-2 models at https://huggingface.co/models?filter=kosmos-2
}


class Kosmos2TextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a KOSMOS-2 text decoder
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
    [microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 65037):
            Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Kosmos2Model`].
        embed_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the layers and the pooler layer.
        layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        ffn_dim (`int`, *optional*, defaults to 8192):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(embed_dim).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import Kosmos2TextConfig, Kosmos2TextModel

    >>> # Initializing a Kosmos2TextConfig microsoft/kosmos-2-patch14-224 style configuration
    >>> configuration = Kosmos2TextConfig()

    >>> # Initializing a Kosmos2TextModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
    >>> model = Kosmos2TextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "kosmos_2_text_model"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"num_attention_heads": "attention_heads", "hidden_size": "embed_dim"}

    def __init__(
        self,
        vocab_size=65037,
        max_position_embeddings=2048,
        embed_dim=2048,
        layers=24,
        ffn_dim=8192,
        attention_heads=32,
        activation_function="gelu",
        dropout=0.1,
        attention_dropout=0.1,
        activation_dropout=0.0,
        layerdrop=0.0,
        layer_norm_eps=1e-5,
        scale_embedding=True,
        use_cache=True,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.embed_dim = embed_dim
        self.layers = layers
        self.ffn_dim = ffn_dim
        self.attention_heads = attention_heads
        self.activation_function = activation_function
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.layerdrop = layerdrop
        self.layer_norm_eps = layer_norm_eps
        self.scale_embedding = scale_embedding
        self.use_cache = use_cache

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the text config dict if we are loading from Kosmos2Config
        if config_dict.get("model_type") == "kosmos-2":
            config_dict = config_dict["text_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class Kosmos2VisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
    KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
    [microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import Kosmos2VisionConfig, Kosmos2VisionModel

    >>> # Initializing a Kosmos2VisionConfig with microsoft/kosmos-2-patch14-224 style configuration
    >>> configuration = Kosmos2VisionConfig()

    >>> # Initializing a Kosmos2VisionModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
    >>> model = Kosmos2VisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "kosmos_2_vision_model"

    def __init__(
        self,
        hidden_size=1024,
        intermediate_size=4096,
        projection_dim=512,
        num_hidden_layers=24,
        num_attention_heads=16,
        num_channels=3,
        image_size=224,
        patch_size=14,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-5,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from Kosmos2Config
        if config_dict.get("model_type") == "kosmos-2":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class Kosmos2Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a KOSMOS-2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the KOSMOS-2
    [microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
        latent_query_num (`int`, *optional*, defaults to 64):
            The number of latent query tokens that represent the image features used in the text decoder component.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import Kosmos2Config, Kosmos2Model

    >>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
    >>> configuration = Kosmos2Config()

    >>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
    >>> model = Kosmos2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "kosmos-2"
    is_composition = True

    def __init__(
        self,
        text_config=None,
        vision_config=None,
        latent_query_num=64,
        **kwargs,
    ):
        super().__init__(**kwargs)

        if text_config is None:
            text_config = {}
            logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")

        if vision_config is None:
            vision_config = {}
            logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")

        self.text_config = Kosmos2TextConfig(**text_config)
        self.vision_config = Kosmos2VisionConfig(**vision_config)

        self.latent_query_num = latent_query_num

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["text_config"] = self.text_config.to_dict()
        output["vision_config"] = self.vision_config.to_dict()
        output["model_type"] = self.__class__.model_type
        return output