File size: 6,764 Bytes
3bbb319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmcv
from mmcv import Config, DictAction
from mmcv.runner import init_dist
from terminaltables import GithubFlavoredMarkdownTable
from tools.analysis_tools.benchmark import repeat_measure_inference_speed
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet benchmark a model of FPS')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint_root', help='Checkpoint file root path')
parser.add_argument(
'--round-num',
type=int,
default=1,
help='round a number to a given precision in decimal digits')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--out', type=str, help='output path of gathered fps to be stored')
parser.add_argument(
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def results2markdown(result_dict):
table_data = []
is_multiple_results = False
for cfg_name, value in result_dict.items():
name = cfg_name.replace('configs/', '')
fps = value['fps']
ms_times_pre_image = value['ms_times_pre_image']
if isinstance(fps, list):
is_multiple_results = True
mean_fps = value['mean_fps']
mean_times_pre_image = value['mean_times_pre_image']
fps_str = ','.join([str(s) for s in fps])
ms_times_pre_image_str = ','.join(
[str(s) for s in ms_times_pre_image])
table_data.append([
name, fps_str, mean_fps, ms_times_pre_image_str,
mean_times_pre_image
])
else:
table_data.append([name, fps, ms_times_pre_image])
if is_multiple_results:
table_data.insert(0, [
'model', 'fps', 'mean_fps', 'times_pre_image(ms)',
'mean_times_pre_image(ms)'
])
else:
table_data.insert(0, ['model', 'fps', 'times_pre_image(ms)'])
table = GithubFlavoredMarkdownTable(table_data)
print(table.table, flush=True)
if __name__ == '__main__':
args = parse_args()
assert args.round_num >= 0
assert args.repeat_num >= 1
config = Config.fromfile(args.config)
if args.launcher == 'none':
raise NotImplementedError('Only supports distributed mode')
else:
init_dist(args.launcher)
result_dict = {}
for model_key in config:
model_infos = config[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
record_metrics = model_info['metric']
cfg_path = model_info['config'].strip()
cfg = Config.fromfile(cfg_path)
checkpoint = osp.join(args.checkpoint_root,
model_info['checkpoint'].strip())
try:
fps = repeat_measure_inference_speed(cfg, checkpoint,
args.max_iter,
args.log_interval,
args.fuse_conv_bn,
args.repeat_num)
if args.repeat_num > 1:
fps_list = [round(fps_, args.round_num) for fps_ in fps]
times_pre_image_list = [
round(1000 / fps_, args.round_num) for fps_ in fps
]
mean_fps = round(
sum(fps_list) / len(fps_list), args.round_num)
mean_times_pre_image = round(
sum(times_pre_image_list) / len(times_pre_image_list),
args.round_num)
print(
f'{cfg_path} '
f'Overall fps: {fps_list}[{mean_fps}] img / s, '
f'times per image: '
f'{times_pre_image_list}[{mean_times_pre_image}] '
f'ms / img',
flush=True)
result_dict[cfg_path] = dict(
fps=fps_list,
mean_fps=mean_fps,
ms_times_pre_image=times_pre_image_list,
mean_times_pre_image=mean_times_pre_image)
else:
print(
f'{cfg_path} fps : {fps:.{args.round_num}f} img / s, '
f'times per image: {1000 / fps:.{args.round_num}f} '
f'ms / img',
flush=True)
result_dict[cfg_path] = dict(
fps=round(fps, args.round_num),
ms_times_pre_image=round(1000 / fps, args.round_num))
except Exception as e:
print(f'{cfg_path} error: {repr(e)}')
if args.repeat_num > 1:
result_dict[cfg_path] = dict(
fps=[0],
mean_fps=0,
ms_times_pre_image=[0],
mean_times_pre_image=0)
else:
result_dict[cfg_path] = dict(fps=0, ms_times_pre_image=0)
if args.out:
mmcv.mkdir_or_exist(args.out)
mmcv.dump(result_dict, osp.join(args.out, 'batch_inference_fps.json'))
results2markdown(result_dict)
|