File size: 22,799 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Benchmark and Model Zoo

## Mirror sites

We only use aliyun to maintain the model zoo since MMDetection V2.0. The model zoo of V1.x has been deprecated.

## Common settings

- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo, caffe-style pretrained backbones are converted from the newly released model from detectron2.
- For fair comparison with other codebases, we report the GPU memory as the maximum value of `torch.cuda.max_memory_allocated()` for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows.
- We report the inference time as the total time of network forwarding and post-processing, excluding the data loading time. Results are obtained with the script [benchmark.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py) which computes the average time on 2000 images.

## ImageNet Pretrained Models

It is common to initialize from backbone models pre-trained on ImageNet classification task. All pre-trained  model links can be found at [open_mmlab](https://github.com/open-mmlab/mmcv/blob/master/mmcv/model_zoo/open_mmlab.json).  According to `img_norm_cfg` and source of weight, we can divide all the ImageNet  pre-trained  model weights into some cases:

- TorchVision:  Corresponding to torchvision weight, including ResNet50, ResNet101. The `img_norm_cfg` is `dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)`.
- Pycls:  Corresponding to [pycls](https://github.com/facebookresearch/pycls) weight, including RegNetX. The `img_norm_cfg` is `dict(   mean=[103.530, 116.280, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False)`.
- MSRA styles: Corresponding to [MSRA](https://github.com/KaimingHe/deep-residual-networks) weights, including ResNet50_Caffe and ResNet101_Caffe. The `img_norm_cfg` is `dict(   mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)`.
- Caffe2 styles:  Currently only contains ResNext101_32x8d. The `img_norm_cfg` is `dict(mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False)`.
- Other styles: E.g SSD which corresponds to `img_norm_cfg` is `dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)` and YOLOv3 which corresponds to `img_norm_cfg` is `dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True)`.

The detailed table of the commonly used backbone models in MMDetection is listed below :

| model            | source      | link                                                                                                                                                                                                   | description                                                                                                                                                                                                                                      |
| ---------------- | ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| ResNet50         | TorchVision | [torchvision's ResNet-50](https://download.pytorch.org/models/resnet50-19c8e357.pth)                                                                                                                   | From [torchvision's ResNet-50](https://download.pytorch.org/models/resnet50-19c8e357.pth).                                                                                                                                                       |
| ResNet101        | TorchVision | [torchvision's ResNet-101](https://download.pytorch.org/models/resnet101-5d3b4d8f.pth)                                                                                                                 | From [torchvision's ResNet-101](https://download.pytorch.org/models/resnet101-5d3b4d8f.pth).                                                                                                                                                     |
| RegNetX          | Pycls       | [RegNetX_3.2gf](https://download.openmmlab.com/pretrain/third_party/regnetx_3.2gf-c2599b0f.pth), [RegNetX_800mf](https://download.openmmlab.com/pretrain/third_party/regnetx_800mf-1f4be4c7.pth). etc. | From [pycls](https://github.com/facebookresearch/pycls).                                                                                                                                                                                         |
| ResNet50_Caffe   | MSRA        | [MSRA's ResNet-50](https://download.openmmlab.com/pretrain/third_party/resnet50_caffe-788b5fa3.pth)                                                                                                    | Converted copy of [Detectron2's R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl) model. The original weight comes from [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks).    |
| ResNet101_Caffe  | MSRA        | [MSRA's ResNet-101](https://download.openmmlab.com/pretrain/third_party/resnet101_caffe-3ad79236.pth)                                                                                                  | Converted copy of [Detectron2's R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl) model. The original weight comes from [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks). |
| ResNext101_32x8d | Caffe2      | [Caffe2 ResNext101_32x8d](https://download.openmmlab.com/pretrain/third_party/resnext101_32x8d-1516f1aa.pth)                                                                                           | Converted copy of [Detectron2's X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl) model. The ResNeXt-101-32x8d model trained with Caffe2 at FB.                                                |

## Baselines

### RPN

Please refer to [RPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/rpn) for details.

### Faster R-CNN

Please refer to [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn) for details.

### Mask R-CNN

Please refer to [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn) for details.

### Fast R-CNN (with pre-computed proposals)

Please refer to [Fast R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/fast_rcnn) for details.

### RetinaNet

Please refer to [RetinaNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet) for details.

### Cascade R-CNN and Cascade Mask R-CNN

Please refer to [Cascade R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/cascade_rcnn) for details.

### Hybrid Task Cascade (HTC)

Please refer to [HTC](https://github.com/open-mmlab/mmdetection/blob/master/configs/htc) for details.

### SSD

Please refer to [SSD](https://github.com/open-mmlab/mmdetection/blob/master/configs/ssd) for details.

### Group Normalization (GN)

Please refer to [Group Normalization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn) for details.

### Weight Standardization

Please refer to [Weight Standardization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn+ws) for details.

### Deformable Convolution v2

Please refer to [Deformable Convolutional Networks](https://github.com/open-mmlab/mmdetection/blob/master/configs/dcn) for details.

### CARAFE: Content-Aware ReAssembly of FEatures

Please refer to [CARAFE](https://github.com/open-mmlab/mmdetection/blob/master/configs/carafe) for details.

### Instaboost

Please refer to [Instaboost](https://github.com/open-mmlab/mmdetection/blob/master/configs/instaboost) for details.

### Libra R-CNN

Please refer to [Libra R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/libra_rcnn) for details.

### Guided Anchoring

Please refer to [Guided Anchoring](https://github.com/open-mmlab/mmdetection/blob/master/configs/guided_anchoring) for details.

### FCOS

Please refer to [FCOS](https://github.com/open-mmlab/mmdetection/blob/master/configs/fcos) for details.

### FoveaBox

Please refer to [FoveaBox](https://github.com/open-mmlab/mmdetection/blob/master/configs/foveabox) for details.

### RepPoints

Please refer to [RepPoints](https://github.com/open-mmlab/mmdetection/blob/master/configs/reppoints) for details.

### FreeAnchor

Please refer to [FreeAnchor](https://github.com/open-mmlab/mmdetection/blob/master/configs/free_anchor) for details.

### Grid R-CNN (plus)

Please refer to [Grid R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/grid_rcnn) for details.

### GHM

Please refer to [GHM](https://github.com/open-mmlab/mmdetection/blob/master/configs/ghm) for details.

### GCNet

Please refer to [GCNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/gcnet) for details.

### HRNet

Please refer to [HRNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/hrnet) for details.

### Mask Scoring R-CNN

Please refer to [Mask Scoring R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/ms_rcnn) for details.

### Train from Scratch

Please refer to [Rethinking ImageNet Pre-training](https://github.com/open-mmlab/mmdetection/blob/master/configs/scratch) for details.

### NAS-FPN

Please refer to [NAS-FPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/nas_fpn) for details.

### ATSS

Please refer to [ATSS](https://github.com/open-mmlab/mmdetection/blob/master/configs/atss) for details.

### FSAF

Please refer to [FSAF](https://github.com/open-mmlab/mmdetection/blob/master/configs/fsaf) for details.

### RegNetX

Please refer to [RegNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet) for details.

### Res2Net

Please refer to [Res2Net](https://github.com/open-mmlab/mmdetection/blob/master/configs/res2net) for details.

### GRoIE

Please refer to [GRoIE](https://github.com/open-mmlab/mmdetection/blob/master/configs/groie) for details.

### Dynamic R-CNN

Please refer to [Dynamic R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/dynamic_rcnn) for details.

### PointRend

Please refer to [PointRend](https://github.com/open-mmlab/mmdetection/blob/master/configs/point_rend) for details.

### DetectoRS

Please refer to [DetectoRS](https://github.com/open-mmlab/mmdetection/blob/master/configs/detectors) for details.

### Generalized Focal Loss

Please refer to [Generalized Focal Loss](https://github.com/open-mmlab/mmdetection/blob/master/configs/gfl) for details.

### CornerNet

Please refer to [CornerNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/cornernet) for details.

### YOLOv3

Please refer to [YOLOv3](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolo) for details.

### PAA

Please refer to [PAA](https://github.com/open-mmlab/mmdetection/blob/master/configs/paa) for details.

### SABL

Please refer to [SABL](https://github.com/open-mmlab/mmdetection/blob/master/configs/sabl) for details.

### CentripetalNet

Please refer to [CentripetalNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/centripetalnet) for details.

### ResNeSt

Please refer to [ResNeSt](https://github.com/open-mmlab/mmdetection/blob/master/configs/resnest) for details.

### DETR

Please refer to [DETR](https://github.com/open-mmlab/mmdetection/blob/master/configs/detr) for details.

### Deformable DETR

Please refer to [Deformable DETR](https://github.com/open-mmlab/mmdetection/blob/master/configs/deformable_detr) for details.

### AutoAssign

Please refer to [AutoAssign](https://github.com/open-mmlab/mmdetection/blob/master/configs/autoassign) for details.

### YOLOF

Please refer to [YOLOF](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolof) for details.

### Seesaw Loss

Please refer to [Seesaw Loss](https://github.com/open-mmlab/mmdetection/blob/master/configs/seesaw_loss) for details.

### CenterNet

Please refer to [CenterNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/centernet) for details.

### YOLOX

Please refer to [YOLOX](https://github.com/open-mmlab/mmdetection/blob/master/configs/yolox) for details.

### PVT

Please refer to [PVT](https://github.com/open-mmlab/mmdetection/blob/master/configs/pvt) for details.

### SOLO

Please refer to [SOLO](https://github.com/open-mmlab/mmdetection/blob/master/configs/solo) for details.

### QueryInst

Please refer to [QueryInst](https://github.com/open-mmlab/mmdetection/blob/master/configs/queryinst) for details.

### PanopticFPN

Please refer to [PanopticFPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/panoptic_fpn) for details.

### MaskFormer

Please refer to [MaskFormer](https://github.com/open-mmlab/mmdetection/blob/master/configs/maskformer) for details.

### DyHead

Please refer to [DyHead](https://github.com/open-mmlab/mmdetection/blob/master/configs/dyhead) for details.

### Mask2Former

Please refer to [Mask2Former](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask2former) for details.

### Efficientnet

Please refer to [Efficientnet](https://github.com/open-mmlab/mmdetection/blob/master/configs/efficientnet) for details.

### Other datasets

We also benchmark some methods on [PASCAL VOC](https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc), [Cityscapes](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes), [OpenImages](https://github.com/open-mmlab/mmdetection/blob/master/configs/openimages) and [WIDER FACE](https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face).

### Pre-trained Models

We also train [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn) and [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn) using ResNet-50 and [RegNetX-3.2G](https://github.com/open-mmlab/mmdetection/blob/master/configs/regnet) with multi-scale training and longer schedules. These models serve as strong pre-trained models for downstream tasks for convenience.

## Speed benchmark

### Training Speed benchmark

We provide [analyze_logs.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py) to get average time of iteration in training. You can find examples in [Log Analysis](https://mmdetection.readthedocs.io/en/latest/useful_tools.html#log-analysis).

We compare the training speed of Mask R-CNN with some other popular frameworks (The data is copied from [detectron2](https://github.com/facebookresearch/detectron2/blob/master/docs/notes/benchmarks.md/)).
For mmdetection, we benchmark with [mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py), which should have the same setting with [mask_rcnn_R_50_FPN_noaug_1x.yaml](https://github.com/facebookresearch/detectron2/blob/master/configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml) of detectron2.
We also provide the [checkpoint](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_compare_20200518-10127928.pth) and [training log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug/mask_rcnn_r50_caffe_fpn_poly_1x_coco_no_aug_20200518_105755.log.json) for reference. The throughput is computed as the average throughput in iterations 100-500 to skip GPU warmup time.

| Implementation                                                                         | Throughput (img/s) |
| -------------------------------------------------------------------------------------- | ------------------ |
| [Detectron2](https://github.com/facebookresearch/detectron2)                           | 62                 |
| [MMDetection](https://github.com/open-mmlab/mmdetection)                               | 61                 |
| [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/)          | 53                 |
| [tensorpack](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) | 50                 |
| [simpledet](https://github.com/TuSimple/simpledet/)                                    | 39                 |
| [Detectron](https://github.com/facebookresearch/Detectron)                             | 19                 |
| [matterport/Mask_RCNN](https://github.com/matterport/Mask_RCNN/)                       | 14                 |

### Inference Speed Benchmark

We provide [benchmark.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/analysis_tools/benchmark.py) to benchmark the inference latency.
The script benchmarkes the model with 2000 images and calculates the average time ignoring first 5 times. You can change the output log interval (defaults: 50) by setting `LOG-INTERVAL`.

```shell
python tools/benchmark.py ${CONFIG} ${CHECKPOINT} [--log-interval $[LOG-INTERVAL]] [--fuse-conv-bn]
```

The latency of all models in our model zoo is benchmarked without setting `fuse-conv-bn`, you can get a lower latency by setting it.

## Comparison with Detectron2

We compare mmdetection with [Detectron2](https://github.com/facebookresearch/detectron2.git) in terms of speed and performance.
We use the commit id [185c27e](https://github.com/facebookresearch/detectron2/tree/185c27e4b4d2d4c68b5627b3765420c6d7f5a659)(30/4/2020) of detectron.
For fair comparison, we install and run both frameworks on the same machine.

### Hardware

- 8 NVIDIA Tesla V100 (32G) GPUs
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

### Software environment

- Python 3.7
- PyTorch 1.4
- CUDA 10.1
- CUDNN 7.6.03
- NCCL 2.4.08

### Performance

| Type                                                                                                                                   | Lr schd | Detectron2                                                                                                                             | mmdetection | Download                                                                                                                                                                                                                                                                                                                                                         |
| -------------------------------------------------------------------------------------------------------------------------------------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------- | ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py) | 1x      | [37.9](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml)                 | 38.0        | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-5324cff8.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco_20200429_234554.log.json)             |
| [Mask R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py)  | 1x      | [38.6 & 35.2](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml) | 38.8 & 35.4 | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco-dbecf295.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco_20200430_054239.log.json) |
| [Retinanet](https://github.com/open-mmlab/mmdetection/blob/master/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_1x_coco.py)        | 1x      | [36.5](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml)                   | 37.0        | [model](https://download.openmmlab.com/mmdetection/v2.0/benchmark/retinanet_r50_caffe_fpn_mstrain_1x_coco/retinanet_r50_caffe_fpn_mstrain_1x_coco-586977a0.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/benchmark/retinanet_r50_caffe_fpn_mstrain_1x_coco/retinanet_r50_caffe_fpn_mstrain_1x_coco_20200430_014748.log.json)                     |

### Training Speed

The training speed is measure with s/iter. The lower, the better.

| Type         | Detectron2 | mmdetection |
| ------------ | ---------- | ----------- |
| Faster R-CNN | 0.210      | 0.216       |
| Mask R-CNN   | 0.261      | 0.265       |
| Retinanet    | 0.200      | 0.205       |

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU, the higher, the better.
To be consistent with Detectron2, we report the pure inference speed (without the time of data loading).
For Mask R-CNN, we exclude the time of RLE encoding in post-processing.
We also include the officially reported speed in the parentheses, which is slightly higher
than the results tested on our server due to differences of hardwares.

| Type         | Detectron2  | mmdetection |
| ------------ | ----------- | ----------- |
| Faster R-CNN | 25.6 (26.3) | 22.2        |
| Mask R-CNN   | 22.5 (23.3) | 19.6        |
| Retinanet    | 17.8 (18.2) | 20.6        |

### Training memory

| Type         | Detectron2 | mmdetection |
| ------------ | ---------- | ----------- |
| Faster R-CNN | 3.0        | 3.8         |
| Mask R-CNN   | 3.4        | 3.9         |
| Retinanet    | 3.9        | 3.4         |