File size: 7,064 Bytes
3bbb319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# 2: 在自定义数据集上进行训练
通过本文档,你将会知道如何使用自定义数据集对预先定义好的模型进行推理,测试以及训练。我们使用 [balloon dataset](https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon) 作为例子来描述整个过程。
基本步骤如下:
1. 准备自定义数据集
2. 准备配置文件
3. 在自定义数据集上进行训练,测试和推理。
## 准备自定义数据集
MMDetection 一共支持三种形式应用新数据集:
1. 将数据集重新组织为 COCO 格式。
2. 将数据集重新组织为一个中间格式。
3. 实现一个新的数据集。
我们通常建议使用前面两种方法,因为它们通常来说比第三种方法要简单。
在本文档中,我们展示一个例子来说明如何将数据转化为 COCO 格式。
**注意**:MMDetection 现只支持对 COCO 格式的数据集进行 mask AP 的评测。
所以用户如果要进行实例分割,只能将数据转成 COCO 格式。
### COCO标注格式
用于实例分割的 COCO 数据集格式如下所示,其中的键(key)都是必要的,参考[这里](https://cocodataset.org/#format-data)来获取更多细节。
```json
{
"images": [image],
"annotations": [annotation],
"categories": [category]
}
image = {
"id": int,
"width": int,
"height": int,
"file_name": str,
}
annotation = {
"id": int,
"image_id": int,
"category_id": int,
"segmentation": RLE or [polygon],
"area": float,
"bbox": [x,y,width,height],
"iscrowd": 0 or 1,
}
categories = [{
"id": int,
"name": str,
"supercategory": str,
}]
```
现在假设我们使用 balloon dataset。
下载了数据集之后,我们需要实现一个函数将标注格式转化为 COCO 格式。然后我们就可以使用已经实现的 `COCODataset` 类来加载数据并进行训练以及评测。
如果你浏览过新数据集,你会发现格式如下:
```json
{'base64_img_data': '',
'file_attributes': {},
'filename': '34020010494_e5cb88e1c4_k.jpg',
'fileref': '',
'regions': {'0': {'region_attributes': {},
'shape_attributes': {'all_points_x': [1020,
1000,
994,
1003,
1023,
1050,
1089,
1134,
1190,
1265,
1321,
1361,
1403,
1428,
1442,
1445,
1441,
1427,
1400,
1361,
1316,
1269,
1228,
1198,
1207,
1210,
1190,
1177,
1172,
1174,
1170,
1153,
1127,
1104,
1061,
1032,
1020],
'all_points_y': [963,
899,
841,
787,
738,
700,
663,
638,
621,
619,
643,
672,
720,
765,
800,
860,
896,
942,
990,
1035,
1079,
1112,
1129,
1134,
1144,
1153,
1166,
1166,
1150,
1136,
1129,
1122,
1112,
1084,
1037,
989,
963],
'name': 'polygon'}}},
'size': 1115004}
```
标注文件时是 JSON 格式的,其中所有键(key)组成了一张图片的所有标注。
其中将 balloon dataset 转化为 COCO 格式的代码如下所示。
```python
import os.path as osp
import mmcv
def convert_balloon_to_coco(ann_file, out_file, image_prefix):
data_infos = mmcv.load(ann_file)
annotations = []
images = []
obj_count = 0
for idx, v in enumerate(mmcv.track_iter_progress(data_infos.values())):
filename = v['filename']
img_path = osp.join(image_prefix, filename)
height, width = mmcv.imread(img_path).shape[:2]
images.append(dict(
id=idx,
file_name=filename,
height=height,
width=width))
bboxes = []
labels = []
masks = []
for _, obj in v['regions'].items():
assert not obj['region_attributes']
obj = obj['shape_attributes']
px = obj['all_points_x']
py = obj['all_points_y']
poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
poly = [p for x in poly for p in x]
x_min, y_min, x_max, y_max = (
min(px), min(py), max(px), max(py))
data_anno = dict(
image_id=idx,
id=obj_count,
category_id=0,
bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
area=(x_max - x_min) * (y_max - y_min),
segmentation=[poly],
iscrowd=0)
annotations.append(data_anno)
obj_count += 1
coco_format_json = dict(
images=images,
annotations=annotations,
categories=[{'id':0, 'name': 'balloon'}])
mmcv.dump(coco_format_json, out_file)
```
使用如上的函数,用户可以成功将标注文件转化为 JSON 格式,之后可以使用 `CocoDataset` 对模型进行训练和评测。
## 准备配置文件
第二步需要准备一个配置文件来成功加载数据集。假设我们想要用 balloon dataset 来训练配备了 FPN 的 Mask R-CNN ,如下是我们的配置文件。假设配置文件命名为 `mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py`,相应保存路径为 `configs/balloon/`,配置文件内容如下所示。
```python
# 这个新的配置文件继承自一个原始配置文件,只需要突出必要的修改部分即可
_base_ = 'mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# 我们需要对头中的类别数量进行修改来匹配数据集的标注
model = dict(
roi_head=dict(
bbox_head=dict(num_classes=1),
mask_head=dict(num_classes=1)))
# 修改数据集相关设置
dataset_type = 'CocoDataset'
classes = ('balloon',)
data = dict(
train=dict(
img_prefix='balloon/train/',
classes=classes,
ann_file='balloon/train/annotation_coco.json'),
val=dict(
img_prefix='balloon/val/',
classes=classes,
ann_file='balloon/val/annotation_coco.json'),
test=dict(
img_prefix='balloon/val/',
classes=classes,
ann_file='balloon/val/annotation_coco.json'))
# 我们可以使用预训练的 Mask R-CNN 来获取更好的性能
load_from = 'checkpoints/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'
```
## 训练一个新的模型
为了使用新的配置方法来对模型进行训练,你只需要运行如下命令。
```shell
python tools/train.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py
```
参考[情况 1](./1_exist_data_model.md)来获取更多详细的使用方法。
## 测试以及推理
为了测试训练完毕的模型,你只需要运行如下命令。
```shell
python tools/test.py configs/balloon/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py work_dirs/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_balloon.py/latest.pth --eval bbox segm
```
参考[情况 1](./1_exist_data_model.md)来获取更多详细的使用方法。
|