File size: 13,359 Bytes
3bbb319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# Copyright (c) OpenMMLab. All rights reserved.
"""Optimize anchor settings on a specific dataset.
This script provides two method to optimize YOLO anchors including k-means
anchor cluster and differential evolution. You can use ``--algorithm k-means``
and ``--algorithm differential_evolution`` to switch two method.
Example:
Use k-means anchor cluster::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--output-dir ${OUTPUT_DIR}
Use differential evolution to optimize anchors::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm differential_evolution \
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--output-dir ${OUTPUT_DIR}
"""
import argparse
import os.path as osp
import mmcv
import numpy as np
import torch
from mmcv import Config
from scipy.optimize import differential_evolution
from mmdet.core import bbox_cxcywh_to_xyxy, bbox_overlaps, bbox_xyxy_to_cxcywh
from mmdet.datasets import build_dataset
from mmdet.utils import get_root_logger, replace_cfg_vals, update_data_root
def parse_args():
parser = argparse.ArgumentParser(description='Optimize anchor parameters.')
parser.add_argument('config', help='Train config file path.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for calculating.')
parser.add_argument(
'--input-shape',
type=int,
nargs='+',
default=[608, 608],
help='input image size')
parser.add_argument(
'--algorithm',
default='differential_evolution',
help='Algorithm used for anchor optimizing.'
'Support k-means and differential_evolution for YOLO.')
parser.add_argument(
'--iters',
default=1000,
type=int,
help='Maximum iterations for optimizer.')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='Path to save anchor optimize result.')
args = parser.parse_args()
return args
class BaseAnchorOptimizer:
"""Base class for anchor optimizer.
Args:
dataset (obj:`Dataset`): Dataset object.
input_shape (list[int]): Input image shape of the model.
Format in [width, height].
logger (obj:`logging.Logger`): The logger for logging.
device (str, optional): Device used for calculating.
Default: 'cuda:0'
out_dir (str, optional): Path to save anchor optimize result.
Default: None
"""
def __init__(self,
dataset,
input_shape,
logger,
device='cuda:0',
out_dir=None):
self.dataset = dataset
self.input_shape = input_shape
self.logger = logger
self.device = device
self.out_dir = out_dir
bbox_whs, img_shapes = self.get_whs_and_shapes()
ratios = img_shapes.max(1, keepdims=True) / np.array([input_shape])
# resize to input shape
self.bbox_whs = bbox_whs / ratios
def get_whs_and_shapes(self):
"""Get widths and heights of bboxes and shapes of images.
Returns:
tuple[np.ndarray]: Array of bbox shapes and array of image
shapes with shape (num_bboxes, 2) in [width, height] format.
"""
self.logger.info('Collecting bboxes from annotation...')
bbox_whs = []
img_shapes = []
prog_bar = mmcv.ProgressBar(len(self.dataset))
for idx in range(len(self.dataset)):
ann = self.dataset.get_ann_info(idx)
data_info = self.dataset.data_infos[idx]
img_shape = np.array([data_info['width'], data_info['height']])
gt_bboxes = ann['bboxes']
for bbox in gt_bboxes:
wh = bbox[2:4] - bbox[0:2]
img_shapes.append(img_shape)
bbox_whs.append(wh)
prog_bar.update()
print('\n')
bbox_whs = np.array(bbox_whs)
img_shapes = np.array(img_shapes)
self.logger.info(f'Collected {bbox_whs.shape[0]} bboxes.')
return bbox_whs, img_shapes
def get_zero_center_bbox_tensor(self):
"""Get a tensor of bboxes centered at (0, 0).
Returns:
Tensor: Tensor of bboxes with shape (num_bboxes, 4)
in [xmin, ymin, xmax, ymax] format.
"""
whs = torch.from_numpy(self.bbox_whs).to(
self.device, dtype=torch.float32)
bboxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(whs), whs], dim=1))
return bboxes
def optimize(self):
raise NotImplementedError
def save_result(self, anchors, path=None):
anchor_results = []
for w, h in anchors:
anchor_results.append([round(w), round(h)])
self.logger.info(f'Anchor optimize result:{anchor_results}')
if path:
json_path = osp.join(path, 'anchor_optimize_result.json')
mmcv.dump(anchor_results, json_path)
self.logger.info(f'Result saved in {json_path}')
class YOLOKMeansAnchorOptimizer(BaseAnchorOptimizer):
r"""YOLO anchor optimizer using k-means. Code refer to `AlexeyAB/darknet.
<https://github.com/AlexeyAB/darknet/blob/master/src/detector.c>`_.
Args:
num_anchors (int) : Number of anchors.
iters (int): Maximum iterations for k-means.
"""
def __init__(self, num_anchors, iters, **kwargs):
super(YOLOKMeansAnchorOptimizer, self).__init__(**kwargs)
self.num_anchors = num_anchors
self.iters = iters
def optimize(self):
anchors = self.kmeans_anchors()
self.save_result(anchors, self.out_dir)
def kmeans_anchors(self):
self.logger.info(
f'Start cluster {self.num_anchors} YOLO anchors with K-means...')
bboxes = self.get_zero_center_bbox_tensor()
cluster_center_idx = torch.randint(
0, bboxes.shape[0], (self.num_anchors, )).to(self.device)
assignments = torch.zeros((bboxes.shape[0], )).to(self.device)
cluster_centers = bboxes[cluster_center_idx]
if self.num_anchors == 1:
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
prog_bar = mmcv.ProgressBar(self.iters)
for i in range(self.iters):
converged, assignments = self.kmeans_expectation(
bboxes, assignments, cluster_centers)
if converged:
self.logger.info(f'K-means process has converged at iter {i}.')
break
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
prog_bar.update()
print('\n')
avg_iou = bbox_overlaps(bboxes,
cluster_centers).max(1)[0].mean().item()
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
self.logger.info(f'Anchor cluster finish. Average IOU: {avg_iou}')
return anchors
def kmeans_maximization(self, bboxes, assignments, centers):
"""Maximization part of EM algorithm(Expectation-Maximization)"""
new_centers = torch.zeros_like(centers)
for i in range(centers.shape[0]):
mask = (assignments == i)
if mask.sum():
new_centers[i, :] = bboxes[mask].mean(0)
return new_centers
def kmeans_expectation(self, bboxes, assignments, centers):
"""Expectation part of EM algorithm(Expectation-Maximization)"""
ious = bbox_overlaps(bboxes, centers)
closest = ious.argmax(1)
converged = (closest == assignments).all()
return converged, closest
class YOLODEAnchorOptimizer(BaseAnchorOptimizer):
"""YOLO anchor optimizer using differential evolution algorithm.
Args:
num_anchors (int) : Number of anchors.
iters (int): Maximum iterations for k-means.
strategy (str): The differential evolution strategy to use.
Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'currenttobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'currenttobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
Default: 'best1bin'.
population_size (int): Total population size of evolution algorithm.
Default: 15.
convergence_thr (float): Tolerance for convergence, the
optimizing stops when ``np.std(pop) <= abs(convergence_thr)
+ convergence_thr * np.abs(np.mean(population_energies))``,
respectively. Default: 0.0001.
mutation (tuple[float]): Range of dithering randomly changes the
mutation constant. Default: (0.5, 1).
recombination (float): Recombination constant of crossover probability.
Default: 0.7.
"""
def __init__(self,
num_anchors,
iters,
strategy='best1bin',
population_size=15,
convergence_thr=0.0001,
mutation=(0.5, 1),
recombination=0.7,
**kwargs):
super(YOLODEAnchorOptimizer, self).__init__(**kwargs)
self.num_anchors = num_anchors
self.iters = iters
self.strategy = strategy
self.population_size = population_size
self.convergence_thr = convergence_thr
self.mutation = mutation
self.recombination = recombination
def optimize(self):
anchors = self.differential_evolution()
self.save_result(anchors, self.out_dir)
def differential_evolution(self):
bboxes = self.get_zero_center_bbox_tensor()
bounds = []
for i in range(self.num_anchors):
bounds.extend([(0, self.input_shape[0]), (0, self.input_shape[1])])
result = differential_evolution(
func=self.avg_iou_cost,
bounds=bounds,
args=(bboxes, ),
strategy=self.strategy,
maxiter=self.iters,
popsize=self.population_size,
tol=self.convergence_thr,
mutation=self.mutation,
recombination=self.recombination,
updating='immediate',
disp=True)
self.logger.info(
f'Anchor evolution finish. Average IOU: {1 - result.fun}')
anchors = [(w, h) for w, h in zip(result.x[::2], result.x[1::2])]
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
@staticmethod
def avg_iou_cost(anchor_params, bboxes):
assert len(anchor_params) % 2 == 0
anchor_whs = torch.tensor(
[[w, h]
for w, h in zip(anchor_params[::2], anchor_params[1::2])]).to(
bboxes.device, dtype=bboxes.dtype)
anchor_boxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(anchor_whs), anchor_whs], dim=1))
ious = bbox_overlaps(bboxes, anchor_boxes)
max_ious, _ = ious.max(1)
cost = 1 - max_ious.mean().item()
return cost
def main():
logger = get_root_logger()
args = parse_args()
cfg = args.config
cfg = Config.fromfile(cfg)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMDET_DATASETS
update_data_root(cfg)
input_shape = args.input_shape
assert len(input_shape) == 2
anchor_type = cfg.model.bbox_head.anchor_generator.type
assert anchor_type == 'YOLOAnchorGenerator', \
f'Only support optimize YOLOAnchor, but get {anchor_type}.'
base_sizes = cfg.model.bbox_head.anchor_generator.base_sizes
num_anchors = sum([len(sizes) for sizes in base_sizes])
train_data_cfg = cfg.data.train
while 'dataset' in train_data_cfg:
train_data_cfg = train_data_cfg['dataset']
dataset = build_dataset(train_data_cfg)
if args.algorithm == 'k-means':
optimizer = YOLOKMeansAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchors=num_anchors,
iters=args.iters,
logger=logger,
out_dir=args.output_dir)
elif args.algorithm == 'differential_evolution':
optimizer = YOLODEAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchors=num_anchors,
iters=args.iters,
logger=logger,
out_dir=args.output_dir)
else:
raise NotImplementedError(
f'Only support k-means and differential_evolution, '
f'but get {args.algorithm}')
optimizer.optimize()
if __name__ == '__main__':
main()
|