File size: 7,841 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import xml.etree.ElementTree as ET

import mmcv
import numpy as np

from mmdet.core import voc_classes

label_ids = {name: i for i, name in enumerate(voc_classes())}


def parse_xml(args):
    xml_path, img_path = args
    tree = ET.parse(xml_path)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    bboxes = []
    labels = []
    bboxes_ignore = []
    labels_ignore = []
    for obj in root.findall('object'):
        name = obj.find('name').text
        label = label_ids[name]
        difficult = int(obj.find('difficult').text)
        bnd_box = obj.find('bndbox')
        bbox = [
            int(bnd_box.find('xmin').text),
            int(bnd_box.find('ymin').text),
            int(bnd_box.find('xmax').text),
            int(bnd_box.find('ymax').text)
        ]
        if difficult:
            bboxes_ignore.append(bbox)
            labels_ignore.append(label)
        else:
            bboxes.append(bbox)
            labels.append(label)
    if not bboxes:
        bboxes = np.zeros((0, 4))
        labels = np.zeros((0, ))
    else:
        bboxes = np.array(bboxes, ndmin=2) - 1
        labels = np.array(labels)
    if not bboxes_ignore:
        bboxes_ignore = np.zeros((0, 4))
        labels_ignore = np.zeros((0, ))
    else:
        bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1
        labels_ignore = np.array(labels_ignore)
    annotation = {
        'filename': img_path,
        'width': w,
        'height': h,
        'ann': {
            'bboxes': bboxes.astype(np.float32),
            'labels': labels.astype(np.int64),
            'bboxes_ignore': bboxes_ignore.astype(np.float32),
            'labels_ignore': labels_ignore.astype(np.int64)
        }
    }
    return annotation


def cvt_annotations(devkit_path, years, split, out_file):
    if not isinstance(years, list):
        years = [years]
    annotations = []
    for year in years:
        filelist = osp.join(devkit_path,
                            f'VOC{year}/ImageSets/Main/{split}.txt')
        if not osp.isfile(filelist):
            print(f'filelist does not exist: {filelist}, '
                  f'skip voc{year} {split}')
            return
        img_names = mmcv.list_from_file(filelist)
        xml_paths = [
            osp.join(devkit_path, f'VOC{year}/Annotations/{img_name}.xml')
            for img_name in img_names
        ]
        img_paths = [
            f'VOC{year}/JPEGImages/{img_name}.jpg' for img_name in img_names
        ]
        part_annotations = mmcv.track_progress(parse_xml,
                                               list(zip(xml_paths, img_paths)))
        annotations.extend(part_annotations)
    if out_file.endswith('json'):
        annotations = cvt_to_coco_json(annotations)
    mmcv.dump(annotations, out_file)
    return annotations


def cvt_to_coco_json(annotations):
    image_id = 0
    annotation_id = 0
    coco = dict()
    coco['images'] = []
    coco['type'] = 'instance'
    coco['categories'] = []
    coco['annotations'] = []
    image_set = set()

    def addAnnItem(annotation_id, image_id, category_id, bbox, difficult_flag):
        annotation_item = dict()
        annotation_item['segmentation'] = []

        seg = []
        # bbox[] is x1,y1,x2,y2
        # left_top
        seg.append(int(bbox[0]))
        seg.append(int(bbox[1]))
        # left_bottom
        seg.append(int(bbox[0]))
        seg.append(int(bbox[3]))
        # right_bottom
        seg.append(int(bbox[2]))
        seg.append(int(bbox[3]))
        # right_top
        seg.append(int(bbox[2]))
        seg.append(int(bbox[1]))

        annotation_item['segmentation'].append(seg)

        xywh = np.array(
            [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]])
        annotation_item['area'] = int(xywh[2] * xywh[3])
        if difficult_flag == 1:
            annotation_item['ignore'] = 0
            annotation_item['iscrowd'] = 1
        else:
            annotation_item['ignore'] = 0
            annotation_item['iscrowd'] = 0
        annotation_item['image_id'] = int(image_id)
        annotation_item['bbox'] = xywh.astype(int).tolist()
        annotation_item['category_id'] = int(category_id)
        annotation_item['id'] = int(annotation_id)
        coco['annotations'].append(annotation_item)
        return annotation_id + 1

    for category_id, name in enumerate(voc_classes()):
        category_item = dict()
        category_item['supercategory'] = str('none')
        category_item['id'] = int(category_id)
        category_item['name'] = str(name)
        coco['categories'].append(category_item)

    for ann_dict in annotations:
        file_name = ann_dict['filename']
        ann = ann_dict['ann']
        assert file_name not in image_set
        image_item = dict()
        image_item['id'] = int(image_id)
        image_item['file_name'] = str(file_name)
        image_item['height'] = int(ann_dict['height'])
        image_item['width'] = int(ann_dict['width'])
        coco['images'].append(image_item)
        image_set.add(file_name)

        bboxes = ann['bboxes'][:, :4]
        labels = ann['labels']
        for bbox_id in range(len(bboxes)):
            bbox = bboxes[bbox_id]
            label = labels[bbox_id]
            annotation_id = addAnnItem(
                annotation_id, image_id, label, bbox, difficult_flag=0)

        bboxes_ignore = ann['bboxes_ignore'][:, :4]
        labels_ignore = ann['labels_ignore']
        for bbox_id in range(len(bboxes_ignore)):
            bbox = bboxes_ignore[bbox_id]
            label = labels_ignore[bbox_id]
            annotation_id = addAnnItem(
                annotation_id, image_id, label, bbox, difficult_flag=1)

        image_id += 1

    return coco


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert PASCAL VOC annotations to mmdetection format')
    parser.add_argument('devkit_path', help='pascal voc devkit path')
    parser.add_argument('-o', '--out-dir', help='output path')
    parser.add_argument(
        '--out-format',
        default='pkl',
        choices=('pkl', 'coco'),
        help='output format, "coco" indicates coco annotation format')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    devkit_path = args.devkit_path
    out_dir = args.out_dir if args.out_dir else devkit_path
    mmcv.mkdir_or_exist(out_dir)

    years = []
    if osp.isdir(osp.join(devkit_path, 'VOC2007')):
        years.append('2007')
    if osp.isdir(osp.join(devkit_path, 'VOC2012')):
        years.append('2012')
    if '2007' in years and '2012' in years:
        years.append(['2007', '2012'])
    if not years:
        raise IOError(f'The devkit path {devkit_path} contains neither '
                      '"VOC2007" nor "VOC2012" subfolder')
    out_fmt = f'.{args.out_format}'
    if args.out_format == 'coco':
        out_fmt = '.json'
    for year in years:
        if year == '2007':
            prefix = 'voc07'
        elif year == '2012':
            prefix = 'voc12'
        elif year == ['2007', '2012']:
            prefix = 'voc0712'
        for split in ['train', 'val', 'trainval']:
            dataset_name = prefix + '_' + split
            print(f'processing {dataset_name} ...')
            cvt_annotations(devkit_path, year, split,
                            osp.join(out_dir, dataset_name + out_fmt))
        if not isinstance(year, list):
            dataset_name = prefix + '_test'
            print(f'processing {dataset_name} ...')
            cvt_annotations(devkit_path, year, 'test',
                            osp.join(out_dir, dataset_name + out_fmt))
    print('Done!')


if __name__ == '__main__':
    main()