camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess
from collections import OrderedDict
import mmcv
import torch
import yaml
def ordered_yaml_dump(data, stream=None, Dumper=yaml.SafeDumper, **kwds):
class OrderedDumper(Dumper):
pass
def _dict_representer(dumper, data):
return dumper.represent_mapping(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items())
OrderedDumper.add_representer(OrderedDict, _dict_representer)
return yaml.dump(data, stream, OrderedDumper, **kwds)
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# remove ema state_dict
for key in list(checkpoint['state_dict']):
if key.startswith('ema_'):
checkpoint['state_dict'].pop(key)
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
if torch.__version__ >= '1.6':
torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
else:
torch.save(checkpoint, out_file)
sha = subprocess.check_output(['sha256sum', out_file]).decode()
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', out_file, final_file])
return final_file
def is_by_epoch(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
return cfg.runner.type == 'EpochBasedRunner'
def get_final_epoch_or_iter(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
if cfg.runner.type == 'EpochBasedRunner':
return cfg.runner.max_epochs
else:
return cfg.runner.max_iters
def get_best_epoch_or_iter(exp_dir):
best_epoch_iter_full_path = list(
sorted(glob.glob(osp.join(exp_dir, 'best_*.pth'))))[-1]
best_epoch_or_iter_model_path = best_epoch_iter_full_path.split('/')[-1]
best_epoch_or_iter = best_epoch_or_iter_model_path.\
split('_')[-1].split('.')[0]
return best_epoch_or_iter_model_path, int(best_epoch_or_iter)
def get_real_epoch_or_iter(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
if cfg.runner.type == 'EpochBasedRunner':
epoch = cfg.runner.max_epochs
if cfg.data.train.type == 'RepeatDataset':
epoch *= cfg.data.train.times
return epoch
else:
return cfg.runner.max_iters
def get_final_results(log_json_path,
epoch_or_iter,
results_lut,
by_epoch=True):
result_dict = dict()
last_val_line = None
last_train_line = None
last_val_line_idx = -1
last_train_line_idx = -1
with open(log_json_path, 'r') as f:
for i, line in enumerate(f.readlines()):
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
if by_epoch:
if (log_line['mode'] == 'train'
and log_line['epoch'] == epoch_or_iter):
result_dict['memory'] = log_line['memory']
if (log_line['mode'] == 'val'
and log_line['epoch'] == epoch_or_iter):
result_dict.update({
key: log_line[key]
for key in results_lut if key in log_line
})
return result_dict
else:
if log_line['mode'] == 'train':
last_train_line_idx = i
last_train_line = log_line
if log_line and log_line['mode'] == 'val':
last_val_line_idx = i
last_val_line = log_line
# bug: max_iters = 768, last_train_line['iter'] = 750
assert last_val_line_idx == last_train_line_idx + 1, \
'Log file is incomplete'
result_dict['memory'] = last_train_line['memory']
result_dict.update({
key: last_val_line[key]
for key in results_lut if key in last_val_line
})
return result_dict
def get_dataset_name(config):
# If there are more dataset, add here.
name_map = dict(
CityscapesDataset='Cityscapes',
CocoDataset='COCO',
CocoPanopticDataset='COCO',
DeepFashionDataset='Deep Fashion',
LVISV05Dataset='LVIS v0.5',
LVISV1Dataset='LVIS v1',
VOCDataset='Pascal VOC',
WIDERFaceDataset='WIDER Face',
OpenImagesDataset='OpenImagesDataset',
OpenImagesChallengeDataset='OpenImagesChallengeDataset')
cfg = mmcv.Config.fromfile('./configs/' + config)
return name_map[cfg.dataset_type]
def convert_model_info_to_pwc(model_infos):
pwc_files = {}
for model in model_infos:
cfg_folder_name = osp.split(model['config'])[-2]
pwc_model_info = OrderedDict()
pwc_model_info['Name'] = osp.split(model['config'])[-1].split('.')[0]
pwc_model_info['In Collection'] = 'Please fill in Collection name'
pwc_model_info['Config'] = osp.join('configs', model['config'])
# get metadata
memory = round(model['results']['memory'] / 1024, 1)
meta_data = OrderedDict()
meta_data['Training Memory (GB)'] = memory
if 'epochs' in model:
meta_data['Epochs'] = get_real_epoch_or_iter(model['config'])
else:
meta_data['Iterations'] = get_real_epoch_or_iter(model['config'])
pwc_model_info['Metadata'] = meta_data
# get dataset name
dataset_name = get_dataset_name(model['config'])
# get results
results = []
# if there are more metrics, add here.
if 'bbox_mAP' in model['results']:
metric = round(model['results']['bbox_mAP'] * 100, 1)
results.append(
OrderedDict(
Task='Object Detection',
Dataset=dataset_name,
Metrics={'box AP': metric}))
if 'segm_mAP' in model['results']:
metric = round(model['results']['segm_mAP'] * 100, 1)
results.append(
OrderedDict(
Task='Instance Segmentation',
Dataset=dataset_name,
Metrics={'mask AP': metric}))
if 'PQ' in model['results']:
metric = round(model['results']['PQ'], 1)
results.append(
OrderedDict(
Task='Panoptic Segmentation',
Dataset=dataset_name,
Metrics={'PQ': metric}))
pwc_model_info['Results'] = results
link_string = 'https://download.openmmlab.com/mmdetection/v2.0/'
link_string += '{}/{}'.format(model['config'].rstrip('.py'),
osp.split(model['model_path'])[-1])
pwc_model_info['Weights'] = link_string
if cfg_folder_name in pwc_files:
pwc_files[cfg_folder_name].append(pwc_model_info)
else:
pwc_files[cfg_folder_name] = [pwc_model_info]
return pwc_files
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'out', type=str, help='output path of gathered models to be stored')
parser.add_argument(
'--best',
action='store_true',
help='whether to gather the best model.')
args = parser.parse_args()
return args
def main():
args = parse_args()
models_root = args.root
models_out = args.out
mmcv.mkdir_or_exist(models_out)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
if osp.exists(osp.join(models_root, raw_config)):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
exp_dir = osp.join(models_root, used_config)
by_epoch = is_by_epoch(used_config)
# check whether the exps is finished
if args.best is True:
final_model, final_epoch_or_iter = get_best_epoch_or_iter(exp_dir)
else:
final_epoch_or_iter = get_final_epoch_or_iter(used_config)
final_model = '{}_{}.pth'.format('epoch' if by_epoch else 'iter',
final_epoch_or_iter)
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
continue
# get the latest logs
log_json_path = list(
sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
cfg = mmcv.Config.fromfile('./configs/' + used_config)
results_lut = cfg.evaluation.metric
if not isinstance(results_lut, list):
results_lut = [results_lut]
# case when using VOC, the evaluation key is only 'mAP'
# when using Panoptic Dataset, the evaluation key is 'PQ'.
for i, key in enumerate(results_lut):
if 'mAP' not in key and 'PQ' not in key:
results_lut[i] = key + '_mAP'
model_performance = get_final_results(log_json_path,
final_epoch_or_iter, results_lut,
by_epoch)
if model_performance is None:
continue
model_time = osp.split(log_txt_path)[-1].split('.')[0]
model_info = dict(
config=used_config,
results=model_performance,
model_time=model_time,
final_model=final_model,
log_json_path=osp.split(log_json_path)[-1])
model_info['epochs' if by_epoch else 'iterations'] =\
final_epoch_or_iter
model_infos.append(model_info)
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
mmcv.mkdir_or_exist(model_publish_dir)
model_name = osp.split(model['config'])[-1].split('.')[0]
model_name += '_' + model['model_time']
publish_model_path = osp.join(model_publish_dir, model_name)
trained_model_path = osp.join(models_root, model['config'],
model['final_model'])
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
# copy log
shutil.copy(
osp.join(models_root, model['config'], model['log_json_path']),
osp.join(model_publish_dir, f'{model_name}.log.json'))
shutil.copy(
osp.join(models_root, model['config'],
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, f'{model_name}.log'))
# copy config to guarantee reproducibility
config_path = model['config']
config_path = osp.join(
'configs',
config_path) if 'configs' not in config_path else config_path
target_config_path = osp.split(config_path)[-1]
shutil.copy(config_path, osp.join(model_publish_dir,
target_config_path))
model['model_path'] = final_model_path
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
print(f'Totally gathered {len(publish_model_infos)} models')
mmcv.dump(models, osp.join(models_out, 'model_info.json'))
pwc_files = convert_model_info_to_pwc(publish_model_infos)
for name in pwc_files:
with open(osp.join(models_out, name + '_metafile.yml'), 'w') as f:
ordered_yaml_dump(pwc_files[name], f, encoding='utf-8')
if __name__ == '__main__':
main()