show / mmdetection-2.26.0 /.dev_scripts /test_init_backbone.py
camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
"""Check out backbone whether successfully load pretrained checkpoint."""
import copy
import os
from os.path import dirname, exists, join
import pytest
from mmcv import Config, ProgressBar
from mmcv.runner import _load_checkpoint
from mmdet.models import build_detector
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmdetection repo
repo_dpath = dirname(dirname(__file__))
except NameError:
# For IPython development when this __file__ is not defined
import mmdet
repo_dpath = dirname(dirname(mmdet.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_detector_cfg(fname):
"""Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
return model
def _traversed_config_file():
"""We traversed all potential config files under the `config` file. If you
need to print details or debug code, you can use this function.
If the `backbone.init_cfg` is None (do not use `Pretrained` init way), you
need add the folder name in `ignores_folder` (if the config files in this
folder all set backbone.init_cfg is None) or add config name in
`ignores_file` (if the config file set backbone.init_cfg is None)
"""
config_path = _get_config_directory()
check_cfg_names = []
# `base`, `legacy_1.x` and `common` ignored by default.
ignores_folder = ['_base_', 'legacy_1.x', 'common']
# 'ld' need load teacher model, if want to check 'ld',
# please check teacher_config path first.
ignores_folder += ['ld']
# `selfsup_pretrain` need convert model, if want to check this model,
# need to convert the model first.
ignores_folder += ['selfsup_pretrain']
# the `init_cfg` in 'centripetalnet', 'cornernet', 'cityscapes',
# 'scratch' is None.
# the `init_cfg` in ssdlite(`ssdlite_mobilenetv2_scratch_600e_coco.py`)
# is None
# Please confirm `bockbone.init_cfg` is None first.
ignores_folder += ['centripetalnet', 'cornernet', 'cityscapes', 'scratch']
ignores_file = ['ssdlite_mobilenetv2_scratch_600e_coco.py']
for config_file_name in os.listdir(config_path):
if config_file_name not in ignores_folder:
config_file = join(config_path, config_file_name)
if os.path.isdir(config_file):
for config_sub_file in os.listdir(config_file):
if config_sub_file.endswith('py') and \
config_sub_file not in ignores_file:
name = join(config_file, config_sub_file)
check_cfg_names.append(name)
return check_cfg_names
def _check_backbone(config, print_cfg=True):
"""Check out backbone whether successfully load pretrained model, by using
`backbone.init_cfg`.
First, using `mmcv._load_checkpoint` to load the checkpoint without
loading models.
Then, using `build_detector` to build models, and using
`model.init_weights()` to initialize the parameters.
Finally, assert weights and bias of each layer loaded from pretrained
checkpoint are equal to the weights and bias of original checkpoint.
For the convenience of comparison, we sum up weights and bias of
each loaded layer separately.
Args:
config (str): Config file path.
print_cfg (bool): Whether print logger and return the result.
Returns:
results (str or None): If backbone successfully load pretrained
checkpoint, return None; else, return config file path.
"""
if print_cfg:
print('-' * 15 + 'loading ', config)
cfg = Config.fromfile(config)
init_cfg = None
try:
init_cfg = cfg.model.backbone.init_cfg
init_flag = True
except AttributeError:
init_flag = False
if init_cfg is None or init_cfg.get('type') != 'Pretrained':
init_flag = False
if init_flag:
checkpoint = _load_checkpoint(init_cfg.checkpoint)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
model = build_detector(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
model.init_weights()
checkpoint_layers = state_dict.keys()
for name, value in model.backbone.state_dict().items():
if name in checkpoint_layers:
assert value.equal(state_dict[name])
if print_cfg:
print('-' * 10 + 'Successfully load checkpoint' + '-' * 10 +
'\n', )
return None
else:
if print_cfg:
print(config + '\n' + '-' * 10 +
'config file do not have init_cfg' + '-' * 10 + '\n')
return config
@pytest.mark.parametrize('config', _traversed_config_file())
def test_load_pretrained(config):
"""Check out backbone whether successfully load pretrained model by using
`backbone.init_cfg`.
Details please refer to `_check_backbone`
"""
_check_backbone(config, print_cfg=False)
def _test_load_pretrained():
"""We traversed all potential config files under the `config` file. If you
need to print details or debug code, you can use this function.
Returns:
check_cfg_names (list[str]): Config files that backbone initialized
from pretrained checkpoint might be problematic. Need to recheck
the config file. The output including the config files that the
backbone.init_cfg is None
"""
check_cfg_names = _traversed_config_file()
need_check_cfg = []
prog_bar = ProgressBar(len(check_cfg_names))
for config in check_cfg_names:
init_cfg_name = _check_backbone(config)
if init_cfg_name is not None:
need_check_cfg.append(init_cfg_name)
prog_bar.update()
print('These config files need to be checked again')
print(need_check_cfg)