camenduru's picture
thanks to show ❤
3bbb319
# dataset settings
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=8,
dataset=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_train.json',
img_prefix=data_root + 'leftImg8bit/train/',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
img_prefix=data_root + 'leftImg8bit/val/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_test.json',
img_prefix=data_root + 'leftImg8bit/test/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])