|
|
|
dataset_type = 'DeepFashionDataset' |
|
data_root = 'data/DeepFashion/In-shop/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict(type='Resize', img_scale=(750, 1101), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(750, 1101), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
imgs_per_gpu=2, |
|
workers_per_gpu=1, |
|
train=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', |
|
img_prefix=data_root + 'Img/', |
|
pipeline=train_pipeline, |
|
data_root=data_root), |
|
val=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json', |
|
img_prefix=data_root + 'Img/', |
|
pipeline=test_pipeline, |
|
data_root=data_root), |
|
test=dict( |
|
type=dataset_type, |
|
ann_file=data_root + |
|
'annotations/DeepFashion_segmentation_gallery.json', |
|
img_prefix=data_root + 'Img/', |
|
pipeline=test_pipeline, |
|
data_root=data_root)) |
|
evaluation = dict(interval=5, metric=['bbox', 'segm']) |
|
|