|
|
|
dataset_type = 'VOCDataset' |
|
data_root = 'data/VOCdevkit/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict( |
|
type='RepeatDataset', |
|
times=3, |
|
dataset=dict( |
|
type=dataset_type, |
|
ann_file=[ |
|
data_root + 'VOC2007/ImageSets/Main/trainval.txt', |
|
data_root + 'VOC2012/ImageSets/Main/trainval.txt' |
|
], |
|
img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'], |
|
pipeline=train_pipeline)), |
|
val=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', |
|
img_prefix=data_root + 'VOC2007/', |
|
pipeline=test_pipeline), |
|
test=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt', |
|
img_prefix=data_root + 'VOC2007/', |
|
pipeline=test_pipeline)) |
|
evaluation = dict(interval=1, metric='mAP') |
|
|