|
|
|
|
|
_base_ = [ |
|
'../_base_/datasets/coco_detection.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
model = dict( |
|
type='AutoAssign', |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron2/resnet50_caffe')), |
|
neck=dict( |
|
type='FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs=True, |
|
num_outs=5, |
|
relu_before_extra_convs=True, |
|
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')), |
|
bbox_head=dict( |
|
type='AutoAssignHead', |
|
num_classes=80, |
|
in_channels=256, |
|
stacked_convs=4, |
|
feat_channels=256, |
|
strides=[8, 16, 32, 64, 128], |
|
loss_bbox=dict(type='GIoULoss', loss_weight=5.0)), |
|
train_cfg=None, |
|
test_cfg=dict( |
|
nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.6), |
|
max_per_img=100)) |
|
img_norm_cfg = dict( |
|
mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
] |
|
data = dict( |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|
|
optimizer = dict(lr=0.01, paramwise_cfg=dict(norm_decay_mult=0.)) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=1000, |
|
warmup_ratio=1.0 / 1000, |
|
step=[8, 11]) |
|
total_epochs = 12 |
|
|