|
Collections: |
|
- Name: AutoAssign |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- AutoAssign |
|
- FPN |
|
- ResNet |
|
Paper: |
|
URL: https://arxiv.org/abs/2007.03496 |
|
Title: 'AutoAssign: Differentiable Label Assignment for Dense Object Detection' |
|
README: configs/autoassign/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.12.0/mmdet/models/detectors/autoassign.py#L6 |
|
Version: v2.12.0 |
|
|
|
Models: |
|
- Name: autoassign_r50_fpn_8x2_1x_coco |
|
In Collection: AutoAssign |
|
Config: configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.08 |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 40.4 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth |
|
|