show / mmdetection-2.26.0 /configs /cityscapes /faster_rcnn_r50_fpn_1x_cityscapes.py
camenduru's picture
thanks to show ❤
3bbb319
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/cityscapes_detection.py',
'../_base_/default_runtime.py'
]
model = dict(
backbone=dict(init_cfg=None),
roi_head=dict(
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=8,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))))
# optimizer
# lr is set for a batch size of 8
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
# [7] yields higher performance than [6]
step=[7])
runner = dict(
type='EpochBasedRunner', max_epochs=8) # actual epoch = 8 * 8 = 64
log_config = dict(interval=100)
# For better, more stable performance initialize from COCO
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (1 samples per GPU)
auto_scale_lr = dict(base_batch_size=8)