|
_base_ = '../_base_/default_runtime.py' |
|
|
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
image_size = (1024, 1024) |
|
|
|
file_client_args = dict(backend='disk') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict( |
|
type='Resize', |
|
img_scale=image_size, |
|
ratio_range=(0.1, 2.0), |
|
multiscale_mode='range', |
|
keep_ratio=True), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='absolute_range', |
|
crop_size=image_size, |
|
recompute_bbox=True, |
|
allow_negative_crop=True), |
|
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=image_size), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
|
|
|
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict( |
|
type='RepeatDataset', |
|
times=4, |
|
dataset=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/instances_train2017.json', |
|
img_prefix=data_root + 'train2017/', |
|
pipeline=train_pipeline)), |
|
val=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/instances_val2017.json', |
|
img_prefix=data_root + 'val2017/', |
|
pipeline=test_pipeline), |
|
test=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/instances_val2017.json', |
|
img_prefix=data_root + 'val2017/', |
|
pipeline=test_pipeline)) |
|
evaluation = dict(interval=5, metric=['bbox', 'segm']) |
|
|
|
|
|
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004) |
|
optimizer_config = dict(grad_clip=None) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=500, |
|
warmup_ratio=0.067, |
|
step=[22, 24]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=25) |
|
|