|
Collections: |
|
- Name: DDOD |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- DDOD |
|
- FPN |
|
- ResNet |
|
Paper: |
|
URL: https://arxiv.org/pdf/2107.02963.pdf |
|
Title: 'Disentangle Your Dense Object Detector' |
|
README: configs/ddod/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/models/detectors/ddod.py#L6 |
|
Version: v2.25.0 |
|
|
|
Models: |
|
- Name: ddod_r50_fpn_1x_coco |
|
In Collection: DDOD |
|
Config: configs/ddod/ddod_r50_fpn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 3.4 |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/ddod/ddod_r50_fpn_1x_coco/ddod_r50_fpn_1x_coco_20220523_223737-29b2fc67.pth |
|
|