|
_base_ = [ |
|
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' |
|
] |
|
model = dict( |
|
type='DETR', |
|
backbone=dict( |
|
type='ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(3, ), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), |
|
bbox_head=dict( |
|
type='DETRHead', |
|
num_classes=80, |
|
in_channels=2048, |
|
transformer=dict( |
|
type='Transformer', |
|
encoder=dict( |
|
type='DetrTransformerEncoder', |
|
num_layers=6, |
|
transformerlayers=dict( |
|
type='BaseTransformerLayer', |
|
attn_cfgs=[ |
|
dict( |
|
type='MultiheadAttention', |
|
embed_dims=256, |
|
num_heads=8, |
|
dropout=0.1) |
|
], |
|
feedforward_channels=2048, |
|
ffn_dropout=0.1, |
|
operation_order=('self_attn', 'norm', 'ffn', 'norm'))), |
|
decoder=dict( |
|
type='DetrTransformerDecoder', |
|
return_intermediate=True, |
|
num_layers=6, |
|
transformerlayers=dict( |
|
type='DetrTransformerDecoderLayer', |
|
attn_cfgs=dict( |
|
type='MultiheadAttention', |
|
embed_dims=256, |
|
num_heads=8, |
|
dropout=0.1), |
|
feedforward_channels=2048, |
|
ffn_dropout=0.1, |
|
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', |
|
'ffn', 'norm')), |
|
)), |
|
positional_encoding=dict( |
|
type='SinePositionalEncoding', num_feats=128, normalize=True), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
bg_cls_weight=0.1, |
|
use_sigmoid=False, |
|
loss_weight=1.0, |
|
class_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), |
|
|
|
train_cfg=dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
cls_cost=dict(type='ClassificationCost', weight=1.), |
|
reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), |
|
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), |
|
test_cfg=dict(max_per_img=100)) |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
|
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict( |
|
type='AutoAugment', |
|
policies=[[ |
|
dict( |
|
type='Resize', |
|
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), |
|
(608, 1333), (640, 1333), (672, 1333), (704, 1333), |
|
(736, 1333), (768, 1333), (800, 1333)], |
|
multiscale_mode='value', |
|
keep_ratio=True) |
|
], |
|
[ |
|
dict( |
|
type='Resize', |
|
img_scale=[(400, 1333), (500, 1333), (600, 1333)], |
|
multiscale_mode='value', |
|
keep_ratio=True), |
|
dict( |
|
type='RandomCrop', |
|
crop_type='absolute_range', |
|
crop_size=(384, 600), |
|
allow_negative_crop=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(480, 1333), (512, 1333), (544, 1333), |
|
(576, 1333), (608, 1333), (640, 1333), |
|
(672, 1333), (704, 1333), (736, 1333), |
|
(768, 1333), (800, 1333)], |
|
multiscale_mode='value', |
|
override=True, |
|
keep_ratio=True) |
|
]]), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=1), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) |
|
] |
|
|
|
|
|
|
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=1), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=2, |
|
workers_per_gpu=2, |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|
|
optimizer = dict( |
|
type='AdamW', |
|
lr=0.0001, |
|
weight_decay=0.0001, |
|
paramwise_cfg=dict( |
|
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) |
|
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) |
|
|
|
lr_config = dict(policy='step', step=[100]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=150) |
|
|