|
_base_ = [ |
|
'../_base_/models/retinanet_r50_fpn.py', |
|
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
cudnn_benchmark = True |
|
norm_cfg = dict(type='BN', requires_grad=True) |
|
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' |
|
model = dict( |
|
backbone=dict( |
|
_delete_=True, |
|
type='EfficientNet', |
|
arch='b3', |
|
drop_path_rate=0.2, |
|
out_indices=(3, 4, 5), |
|
frozen_stages=0, |
|
norm_cfg=dict( |
|
type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), |
|
norm_eval=False, |
|
init_cfg=dict( |
|
type='Pretrained', prefix='backbone', checkpoint=checkpoint)), |
|
neck=dict( |
|
in_channels=[48, 136, 384], |
|
start_level=0, |
|
out_channels=256, |
|
relu_before_extra_convs=True, |
|
no_norm_on_lateral=True, |
|
norm_cfg=norm_cfg), |
|
bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), |
|
|
|
train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) |
|
|
|
|
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
img_size = (896, 896) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='Resize', |
|
img_scale=img_size, |
|
ratio_range=(0.8, 1.2), |
|
keep_ratio=True), |
|
dict(type='RandomCrop', crop_size=img_size), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=img_size), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=img_size, |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size=img_size), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=4, |
|
workers_per_gpu=4, |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|
|
optimizer_config = dict(grad_clip=None) |
|
optimizer = dict( |
|
type='SGD', |
|
lr=0.04, |
|
momentum=0.9, |
|
weight_decay=0.0001, |
|
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) |
|
|
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=1000, |
|
warmup_ratio=0.1, |
|
step=[8, 11]) |
|
|
|
runner = dict(type='EpochBasedRunner', max_epochs=12) |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(base_batch_size=32) |
|
|