|
Collections: |
|
- Name: Empirical Attention |
|
Metadata: |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- Deformable Convolution |
|
- FPN |
|
- RPN |
|
- ResNet |
|
- RoIAlign |
|
- Spatial Attention |
|
Paper: |
|
URL: https://arxiv.org/pdf/1904.05873 |
|
Title: 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks' |
|
README: configs/empirical_attention/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/generalized_attention.py#L10 |
|
Version: v2.0.0 |
|
|
|
Models: |
|
- Name: faster_rcnn_r50_fpn_attention_1111_1x_coco |
|
In Collection: Empirical Attention |
|
Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 8.0 |
|
inference time (ms/im): |
|
- value: 72.46 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 40.0 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth |
|
|
|
- Name: faster_rcnn_r50_fpn_attention_0010_1x_coco |
|
In Collection: Empirical Attention |
|
Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.2 |
|
inference time (ms/im): |
|
- value: 54.35 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 39.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth |
|
|
|
- Name: faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco |
|
In Collection: Empirical Attention |
|
Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 8.0 |
|
inference time (ms/im): |
|
- value: 78.74 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth |
|
|
|
- Name: faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco |
|
In Collection: Empirical Attention |
|
Config: configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 4.2 |
|
inference time (ms/im): |
|
- value: 58.48 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.0 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth |
|
|