camenduru's picture
thanks to show ❤
3bbb319
Models:
- Name: faster_rcnn_hrnetv2p_w18_1x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
Metadata:
Training Memory (GB): 6.6
inference time (ms/im):
- value: 74.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: faster_rcnn_hrnetv2p_w18_2x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
Metadata:
Training Memory (GB): 6.6
inference time (ms/im):
- value: 74.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: faster_rcnn_hrnetv2p_w32_1x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
Metadata:
Training Memory (GB): 9.0
inference time (ms/im):
- value: 80.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: faster_rcnn_hrnetv2p_w32_2x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
Metadata:
Training Memory (GB): 9.0
inference time (ms/im):
- value: 80.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: faster_rcnn_hrnetv2p_w40_1x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
Metadata:
Training Memory (GB): 10.4
inference time (ms/im):
- value: 95.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: faster_rcnn_hrnetv2p_w40_2x_coco
In Collection: Faster R-CNN
Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
Metadata:
Training Memory (GB): 10.4
inference time (ms/im):
- value: 95.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w18_1x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (ms/im):
- value: 85.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.7
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w18_2x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (ms/im):
- value: 85.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w32_1x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
Metadata:
Training Memory (GB): 9.4
inference time (ms/im):
- value: 88.5
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w32_2x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
Metadata:
Training Memory (GB): 9.4
inference time (ms/im):
- value: 88.5
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w40_1x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
Metadata:
Training Memory (GB): 10.9
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: mask_rcnn_hrnetv2p_w40_2x_coco
In Collection: Mask R-CNN
Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
Metadata:
Training Memory (GB): 10.9
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_rcnn_hrnetv2p_w18_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (ms/im):
- value: 90.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_rcnn_hrnetv2p_w32_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
Metadata:
Training Memory (GB): 9.4
inference time (ms/im):
- value: 90.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_rcnn_hrnetv2p_w40_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
Metadata:
Training Memory (GB): 10.8
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_mask_rcnn_hrnetv2p_w18_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
Metadata:
Training Memory (GB): 8.5
inference time (ms/im):
- value: 117.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_mask_rcnn_hrnetv2p_w32_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
Metadata:
inference time (ms/im):
- value: 120.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: cascade_mask_rcnn_hrnetv2p_w40_20e_coco
In Collection: Cascade R-CNN
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
Metadata:
Training Memory (GB): 12.5
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: htc_hrnetv2p_w18_20e_coco
In Collection: HTC
Config: configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
Metadata:
Training Memory (GB): 10.8
inference time (ms/im):
- value: 212.77
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: htc_hrnetv2p_w32_20e_coco
In Collection: HTC
Config: configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
Metadata:
Training Memory (GB): 13.1
inference time (ms/im):
- value: 204.08
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: htc_hrnetv2p_w40_20e_coco
In Collection: HTC
Config: configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
Metadata:
Training Memory (GB): 14.6
Epochs: 20
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 46.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 40.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w18_gn-head_4x4_1x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 13.0
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 35.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w18_gn-head_4x4_2x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 13.0
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w32_gn-head_4x4_1x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 17.5
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w32_gn-head_4x4_2x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 17.5
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 13.0
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 17.5
inference time (ms/im):
- value: 80.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0
- Name: fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco
In Collection: FCOS
Config: configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
Metadata:
Training Resources: 4x V100 GPUs
Batch Size: 16
Training Memory (GB): 20.3
inference time (ms/im):
- value: 92.59
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- HRNet
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth
Paper:
URL: https://arxiv.org/abs/1904.04514
Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
README: configs/hrnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
Version: v2.0.0