|
Models: |
|
- Name: faster_rcnn_hrnetv2p_w18_1x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.6 |
|
inference time (ms/im): |
|
- value: 74.63 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 36.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: faster_rcnn_hrnetv2p_w18_2x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 6.6 |
|
inference time (ms/im): |
|
- value: 74.63 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 38.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: faster_rcnn_hrnetv2p_w32_1x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.0 |
|
inference time (ms/im): |
|
- value: 80.65 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 40.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: faster_rcnn_hrnetv2p_w32_2x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.0 |
|
inference time (ms/im): |
|
- value: 80.65 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.4 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: faster_rcnn_hrnetv2p_w40_1x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.4 |
|
inference time (ms/im): |
|
- value: 95.24 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: faster_rcnn_hrnetv2p_w40_2x_coco |
|
In Collection: Faster R-CNN |
|
Config: configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.4 |
|
inference time (ms/im): |
|
- value: 95.24 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w18_1x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 7.0 |
|
inference time (ms/im): |
|
- value: 85.47 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 37.7 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 34.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w18_2x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 7.0 |
|
inference time (ms/im): |
|
- value: 85.47 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 39.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 36.0 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w32_1x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.4 |
|
inference time (ms/im): |
|
- value: 88.5 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.2 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.1 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w32_2x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.4 |
|
inference time (ms/im): |
|
- value: 88.5 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.5 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w40_1x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.9 |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.1 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.5 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: mask_rcnn_hrnetv2p_w40_2x_coco |
|
In Collection: Mask R-CNN |
|
Config: configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.9 |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 38.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_rcnn_hrnetv2p_w18_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 7.0 |
|
inference time (ms/im): |
|
- value: 90.91 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_rcnn_hrnetv2p_w32_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 9.4 |
|
inference time (ms/im): |
|
- value: 90.91 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 43.3 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_rcnn_hrnetv2p_w40_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.8 |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 43.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_mask_rcnn_hrnetv2p_w18_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 8.5 |
|
inference time (ms/im): |
|
- value: 117.65 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.6 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 36.4 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_mask_rcnn_hrnetv2p_w32_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py |
|
Metadata: |
|
inference time (ms/im): |
|
- value: 120.48 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 44.3 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 38.6 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: cascade_mask_rcnn_hrnetv2p_w40_20e_coco |
|
In Collection: Cascade R-CNN |
|
Config: configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 12.5 |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 45.1 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 39.3 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: htc_hrnetv2p_w18_20e_coco |
|
In Collection: HTC |
|
Config: configs/hrnet/htc_hrnetv2p_w18_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 10.8 |
|
inference time (ms/im): |
|
- value: 212.77 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.8 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 37.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: htc_hrnetv2p_w32_20e_coco |
|
In Collection: HTC |
|
Config: configs/hrnet/htc_hrnetv2p_w32_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 13.1 |
|
inference time (ms/im): |
|
- value: 204.08 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 45.4 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 39.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: htc_hrnetv2p_w40_20e_coco |
|
In Collection: HTC |
|
Config: configs/hrnet/htc_hrnetv2p_w40_20e_coco.py |
|
Metadata: |
|
Training Memory (GB): 14.6 |
|
Epochs: 20 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Resources: 8x V100 GPUs |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 46.4 |
|
- Task: Instance Segmentation |
|
Dataset: COCO |
|
Metrics: |
|
mask AP: 40.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w18_gn-head_4x4_1x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 13.0 |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 35.3 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w18_gn-head_4x4_2x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 13.0 |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 38.2 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w32_gn-head_4x4_1x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 17.5 |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 12 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 39.5 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w32_gn-head_4x4_2x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 17.5 |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 40.8 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 13.0 |
|
inference time (ms/im): |
|
- value: 77.52 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 38.3 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 17.5 |
|
inference time (ms/im): |
|
- value: 80.65 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 41.9 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|
|
- Name: fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco |
|
In Collection: FCOS |
|
Config: configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py |
|
Metadata: |
|
Training Resources: 4x V100 GPUs |
|
Batch Size: 16 |
|
Training Memory (GB): 20.3 |
|
inference time (ms/im): |
|
- value: 92.59 |
|
hardware: V100 |
|
backend: PyTorch |
|
batch size: 1 |
|
mode: FP32 |
|
resolution: (800, 1333) |
|
Epochs: 24 |
|
Training Data: COCO |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Architecture: |
|
- HRNet |
|
Results: |
|
- Task: Object Detection |
|
Dataset: COCO |
|
Metrics: |
|
box AP: 42.7 |
|
Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth |
|
Paper: |
|
URL: https://arxiv.org/abs/1904.04514 |
|
Title: 'Deep High-Resolution Representation Learning for Visual Recognition' |
|
README: configs/hrnet/README.md |
|
Code: |
|
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195 |
|
Version: v2.0.0 |
|
|