|
|
|
import torch |
|
|
|
from mmdet.core.bbox.assigners import MaxIoUAssigner |
|
from mmdet.core.bbox.samplers import (OHEMSampler, RandomSampler, |
|
ScoreHLRSampler) |
|
|
|
|
|
def test_random_sampler(): |
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2]) |
|
gt_bboxes_ignore = torch.Tensor([ |
|
[30, 30, 40, 40], |
|
]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
|
|
sampler = RandomSampler( |
|
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True) |
|
|
|
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def test_random_sampler_empty_gt(): |
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.empty(0, 4) |
|
gt_labels = torch.empty(0, ).long() |
|
assign_result = assigner.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
|
|
sampler = RandomSampler( |
|
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True) |
|
|
|
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def test_random_sampler_empty_pred(): |
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.empty(0, 4) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2]) |
|
assign_result = assigner.assign(bboxes, gt_bboxes, gt_labels=gt_labels) |
|
|
|
sampler = RandomSampler( |
|
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True) |
|
|
|
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def _context_for_ohem(): |
|
import sys |
|
from os.path import dirname |
|
sys.path.insert(0, dirname(dirname(dirname(__file__)))) |
|
from test_models.test_forward import _get_detector_cfg |
|
|
|
model = _get_detector_cfg( |
|
'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py') |
|
model['pretrained'] = None |
|
|
|
from mmdet.models import build_detector |
|
context = build_detector(model).roi_head |
|
return context |
|
|
|
|
|
def test_ohem_sampler(): |
|
|
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 9], |
|
[0, 10, 10, 19], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2]) |
|
gt_bboxes_ignore = torch.Tensor([ |
|
[30, 30, 40, 40], |
|
]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
|
|
context = _context_for_ohem() |
|
|
|
sampler = OHEMSampler( |
|
num=10, |
|
pos_fraction=0.5, |
|
context=context, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True) |
|
|
|
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]] |
|
sample_result = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def test_ohem_sampler_empty_gt(): |
|
|
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.empty(0, 4) |
|
gt_labels = torch.LongTensor([]) |
|
gt_bboxes_ignore = torch.Tensor([]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
|
|
context = _context_for_ohem() |
|
|
|
sampler = OHEMSampler( |
|
num=10, |
|
pos_fraction=0.5, |
|
context=context, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True) |
|
|
|
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]] |
|
|
|
sample_result = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def test_ohem_sampler_empty_pred(): |
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
bboxes = torch.empty(0, 4) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2, 2, 3]) |
|
gt_bboxes_ignore = torch.Tensor([]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
|
|
context = _context_for_ohem() |
|
|
|
sampler = OHEMSampler( |
|
num=10, |
|
pos_fraction=0.5, |
|
context=context, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True) |
|
|
|
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]] |
|
|
|
sample_result = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
|
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
def test_random_sample_result(): |
|
from mmdet.core.bbox.samplers.sampling_result import SamplingResult |
|
SamplingResult.random(num_gts=0, num_preds=0) |
|
SamplingResult.random(num_gts=0, num_preds=3) |
|
SamplingResult.random(num_gts=3, num_preds=3) |
|
SamplingResult.random(num_gts=0, num_preds=3) |
|
SamplingResult.random(num_gts=7, num_preds=7) |
|
SamplingResult.random(num_gts=7, num_preds=64) |
|
SamplingResult.random(num_gts=24, num_preds=3) |
|
|
|
for i in range(3): |
|
SamplingResult.random(rng=i) |
|
|
|
|
|
def test_score_hlr_sampler_empty_pred(): |
|
assigner = MaxIoUAssigner( |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
ignore_iof_thr=0.5, |
|
ignore_wrt_candidates=False, |
|
) |
|
context = _context_for_ohem() |
|
sampler = ScoreHLRSampler( |
|
num=10, |
|
pos_fraction=0.5, |
|
context=context, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True) |
|
gt_bboxes_ignore = torch.Tensor([]) |
|
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]] |
|
|
|
|
|
bboxes = torch.empty(0, 4) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2, 2, 3]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
sample_result, _ = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
assert len(sample_result.neg_inds) == 0 |
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.empty(0, 4) |
|
gt_labels = torch.LongTensor([]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
sample_result, _ = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
assert len(sample_result.pos_inds) == 0 |
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|
|
|
|
bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_bboxes = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[5, 5, 15, 15], |
|
[32, 32, 38, 42], |
|
]) |
|
gt_labels = torch.LongTensor([1, 2, 2, 3]) |
|
assign_result = assigner.assign( |
|
bboxes, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_labels=gt_labels) |
|
sample_result, _ = sampler.sample( |
|
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats) |
|
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds) |
|
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds) |
|
|