camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmdet.core.bbox.assigners import MaxIoUAssigner
from mmdet.core.bbox.samplers import (OHEMSampler, RandomSampler,
ScoreHLRSampler)
def test_random_sampler():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([1, 2])
gt_bboxes_ignore = torch.Tensor([
[30, 30, 40, 40],
])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
sampler = RandomSampler(
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True)
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_random_sampler_empty_gt():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.empty(0, 4)
gt_labels = torch.empty(0, ).long()
assign_result = assigner.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
sampler = RandomSampler(
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True)
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_random_sampler_empty_pred():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.empty(0, 4)
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([1, 2])
assign_result = assigner.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
sampler = RandomSampler(
num=10, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=True)
sample_result = sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def _context_for_ohem():
import sys
from os.path import dirname
sys.path.insert(0, dirname(dirname(dirname(__file__))))
from test_models.test_forward import _get_detector_cfg
model = _get_detector_cfg(
'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py')
model['pretrained'] = None
from mmdet.models import build_detector
context = build_detector(model).roi_head
return context
def test_ohem_sampler():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 9],
[0, 10, 10, 19],
])
gt_labels = torch.LongTensor([1, 2])
gt_bboxes_ignore = torch.Tensor([
[30, 30, 40, 40],
])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
context = _context_for_ohem()
sampler = OHEMSampler(
num=10,
pos_fraction=0.5,
context=context,
neg_pos_ub=-1,
add_gt_as_proposals=True)
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]]
sample_result = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_ohem_sampler_empty_gt():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.empty(0, 4)
gt_labels = torch.LongTensor([])
gt_bboxes_ignore = torch.Tensor([])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
context = _context_for_ohem()
sampler = OHEMSampler(
num=10,
pos_fraction=0.5,
context=context,
neg_pos_ub=-1,
add_gt_as_proposals=True)
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]]
sample_result = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_ohem_sampler_empty_pred():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
bboxes = torch.empty(0, 4)
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_labels = torch.LongTensor([1, 2, 2, 3])
gt_bboxes_ignore = torch.Tensor([])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
context = _context_for_ohem()
sampler = OHEMSampler(
num=10,
pos_fraction=0.5,
context=context,
neg_pos_ub=-1,
add_gt_as_proposals=True)
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]]
sample_result = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
def test_random_sample_result():
from mmdet.core.bbox.samplers.sampling_result import SamplingResult
SamplingResult.random(num_gts=0, num_preds=0)
SamplingResult.random(num_gts=0, num_preds=3)
SamplingResult.random(num_gts=3, num_preds=3)
SamplingResult.random(num_gts=0, num_preds=3)
SamplingResult.random(num_gts=7, num_preds=7)
SamplingResult.random(num_gts=7, num_preds=64)
SamplingResult.random(num_gts=24, num_preds=3)
for i in range(3):
SamplingResult.random(rng=i)
def test_score_hlr_sampler_empty_pred():
assigner = MaxIoUAssigner(
pos_iou_thr=0.5,
neg_iou_thr=0.5,
ignore_iof_thr=0.5,
ignore_wrt_candidates=False,
)
context = _context_for_ohem()
sampler = ScoreHLRSampler(
num=10,
pos_fraction=0.5,
context=context,
neg_pos_ub=-1,
add_gt_as_proposals=True)
gt_bboxes_ignore = torch.Tensor([])
feats = [torch.rand(1, 256, int(2**i), int(2**i)) for i in [6, 5, 4, 3, 2]]
# empty bbox
bboxes = torch.empty(0, 4)
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_labels = torch.LongTensor([1, 2, 2, 3])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
sample_result, _ = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.neg_inds) == 0
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
# empty gt
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.empty(0, 4)
gt_labels = torch.LongTensor([])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
sample_result, _ = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.pos_inds) == 0
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)
# non-empty input
bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_bboxes = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[5, 5, 15, 15],
[32, 32, 38, 42],
])
gt_labels = torch.LongTensor([1, 2, 2, 3])
assign_result = assigner.assign(
bboxes,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore,
gt_labels=gt_labels)
sample_result, _ = sampler.sample(
assign_result, bboxes, gt_bboxes, gt_labels, feats=feats)
assert len(sample_result.pos_bboxes) == len(sample_result.pos_inds)
assert len(sample_result.neg_bboxes) == len(sample_result.neg_inds)