|
|
|
import copy |
|
from collections import defaultdict |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
from mmcv import Config |
|
|
|
|
|
@pytest.mark.parametrize( |
|
'cfg_file', |
|
['./tests/data/configs_mmtrack/selsa_faster_rcnn_r101_dc5_1x.py']) |
|
def test_vid_fgfa_style_forward(cfg_file): |
|
config = Config.fromfile(cfg_file) |
|
model = copy.deepcopy(config.model) |
|
model.pretrains = None |
|
model.detector.pretrained = None |
|
|
|
from mmtrack.models import build_model |
|
detector = build_model(model) |
|
|
|
|
|
input_shape = (1, 3, 256, 256) |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
img_metas[0]['is_video_data'] = True |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
gt_masks = mm_inputs['gt_masks'] |
|
|
|
ref_input_shape = (2, 3, 256, 256) |
|
ref_mm_inputs = _demo_mm_inputs(ref_input_shape, num_items=[9, 11]) |
|
ref_img = ref_mm_inputs.pop('imgs')[None] |
|
ref_img_metas = ref_mm_inputs.pop('img_metas') |
|
ref_img_metas[0]['is_video_data'] = True |
|
ref_img_metas[1]['is_video_data'] = True |
|
ref_gt_bboxes = ref_mm_inputs['gt_bboxes'] |
|
ref_gt_labels = ref_mm_inputs['gt_labels'] |
|
ref_gt_masks = ref_mm_inputs['gt_masks'] |
|
|
|
losses = detector.forward( |
|
img=imgs, |
|
img_metas=img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
ref_img=ref_img, |
|
ref_img_metas=[ref_img_metas], |
|
ref_gt_bboxes=ref_gt_bboxes, |
|
ref_gt_labels=ref_gt_labels, |
|
gt_masks=gt_masks, |
|
ref_gt_masks=ref_gt_masks, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
loss.requires_grad_(True) |
|
assert float(loss.item()) > 0 |
|
loss.backward() |
|
|
|
|
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
img_metas[0]['is_video_data'] = True |
|
gt_bboxes = mm_inputs['gt_bboxes'] |
|
gt_labels = mm_inputs['gt_labels'] |
|
gt_masks = mm_inputs['gt_masks'] |
|
|
|
ref_mm_inputs = _demo_mm_inputs(ref_input_shape, num_items=[0, 0]) |
|
ref_imgs = ref_mm_inputs.pop('imgs')[None] |
|
ref_img_metas = ref_mm_inputs.pop('img_metas') |
|
ref_img_metas[0]['is_video_data'] = True |
|
ref_img_metas[1]['is_video_data'] = True |
|
ref_gt_bboxes = ref_mm_inputs['gt_bboxes'] |
|
ref_gt_labels = ref_mm_inputs['gt_labels'] |
|
ref_gt_masks = ref_mm_inputs['gt_masks'] |
|
|
|
losses = detector.forward( |
|
img=imgs, |
|
img_metas=img_metas, |
|
gt_bboxes=gt_bboxes, |
|
gt_labels=gt_labels, |
|
ref_img=ref_imgs, |
|
ref_img_metas=[ref_img_metas], |
|
ref_gt_bboxes=ref_gt_bboxes, |
|
ref_gt_labels=ref_gt_labels, |
|
gt_masks=gt_masks, |
|
ref_gt_masks=ref_gt_masks, |
|
return_loss=True) |
|
assert isinstance(losses, dict) |
|
loss, _ = detector._parse_losses(losses) |
|
loss.requires_grad_(True) |
|
assert float(loss.item()) > 0 |
|
loss.backward() |
|
|
|
|
|
with torch.no_grad(): |
|
imgs = torch.cat([imgs, imgs.clone()], dim=0) |
|
img_list = [g[None, :] for g in imgs] |
|
img_metas.extend(copy.deepcopy(img_metas)) |
|
for i in range(len(img_metas)): |
|
img_metas[i]['frame_id'] = i |
|
img_metas[i]['num_left_ref_imgs'] = 1 |
|
img_metas[i]['frame_stride'] = 1 |
|
ref_imgs = [ref_imgs.clone(), imgs[[0]][None].clone()] |
|
ref_img_metas = [ |
|
copy.deepcopy(ref_img_metas), |
|
copy.deepcopy([img_metas[0]]) |
|
] |
|
results = defaultdict(list) |
|
for one_img, one_meta, ref_img, ref_img_meta in zip( |
|
img_list, img_metas, ref_imgs, ref_img_metas): |
|
result = detector.forward([one_img], [[one_meta]], |
|
ref_img=[ref_img], |
|
ref_img_metas=[[ref_img_meta]], |
|
return_loss=False) |
|
for k, v in result.items(): |
|
results[k].append(v) |
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [ |
|
'./tests/data/configs_mmtrack/tracktor_faster-rcnn_r50_fpn_4e.py', |
|
]) |
|
def test_tracktor_forward(cfg_file): |
|
config = Config.fromfile(cfg_file) |
|
model = copy.deepcopy(config.model) |
|
model.pretrains = None |
|
model.detector.pretrained = None |
|
|
|
from mmtrack.models import build_model |
|
mot = build_model(model) |
|
mot.eval() |
|
|
|
input_shape = (1, 3, 256, 256) |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10], with_track=True) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
with torch.no_grad(): |
|
imgs = torch.cat([imgs, imgs.clone()], dim=0) |
|
img_list = [g[None, :] for g in imgs] |
|
img2_metas = copy.deepcopy(img_metas) |
|
img2_metas[0]['frame_id'] = 1 |
|
img_metas.extend(img2_metas) |
|
results = defaultdict(list) |
|
for one_img, one_meta in zip(img_list, img_metas): |
|
result = mot.forward([one_img], [[one_meta]], return_loss=False) |
|
for k, v in result.items(): |
|
results[k].append(v) |
|
|
|
|
|
def _demo_mm_inputs( |
|
input_shape=(1, 3, 300, 300), |
|
num_items=None, |
|
num_classes=10, |
|
with_track=False): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
|
|
num_items (None | List[int]): |
|
specifies the number of boxes in each batch item |
|
|
|
num_classes (int): |
|
number of different labels a box might have |
|
""" |
|
from mmdet.core import BitmapMasks |
|
|
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
'frame_id': 0, |
|
'img_norm_cfg': { |
|
'mean': (128.0, 128.0, 128.0), |
|
'std': (10.0, 10.0, 10.0) |
|
} |
|
} for i in range(N)] |
|
|
|
gt_bboxes = [] |
|
gt_labels = [] |
|
gt_masks = [] |
|
gt_match_indices = [] |
|
|
|
for batch_idx in range(N): |
|
if num_items is None: |
|
num_boxes = rng.randint(1, 10) |
|
else: |
|
num_boxes = num_items[batch_idx] |
|
|
|
cx, cy, bw, bh = rng.rand(num_boxes, 4).T |
|
|
|
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) |
|
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) |
|
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) |
|
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) |
|
|
|
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T |
|
class_idxs = rng.randint(1, num_classes, size=num_boxes) |
|
|
|
gt_bboxes.append(torch.FloatTensor(boxes)) |
|
gt_labels.append(torch.LongTensor(class_idxs)) |
|
if with_track: |
|
gt_match_indices.append(torch.arange(boxes.shape[0])) |
|
|
|
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) |
|
gt_masks.append(BitmapMasks(mask, H, W)) |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_bboxes': gt_bboxes, |
|
'gt_labels': gt_labels, |
|
'gt_bboxes_ignore': None, |
|
'gt_masks': gt_masks, |
|
} |
|
if with_track: |
|
mm_inputs['gt_match_indices'] = gt_match_indices |
|
return mm_inputs |
|
|