camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from collections import defaultdict
import numpy as np
import pytest
import torch
from mmcv import Config
@pytest.mark.parametrize(
'cfg_file',
['./tests/data/configs_mmtrack/selsa_faster_rcnn_r101_dc5_1x.py'])
def test_vid_fgfa_style_forward(cfg_file):
config = Config.fromfile(cfg_file)
model = copy.deepcopy(config.model)
model.pretrains = None
model.detector.pretrained = None
from mmtrack.models import build_model
detector = build_model(model)
# Test forward train with a non-empty truth batch
input_shape = (1, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10])
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
img_metas[0]['is_video_data'] = True
gt_bboxes = mm_inputs['gt_bboxes']
gt_labels = mm_inputs['gt_labels']
gt_masks = mm_inputs['gt_masks']
ref_input_shape = (2, 3, 256, 256)
ref_mm_inputs = _demo_mm_inputs(ref_input_shape, num_items=[9, 11])
ref_img = ref_mm_inputs.pop('imgs')[None]
ref_img_metas = ref_mm_inputs.pop('img_metas')
ref_img_metas[0]['is_video_data'] = True
ref_img_metas[1]['is_video_data'] = True
ref_gt_bboxes = ref_mm_inputs['gt_bboxes']
ref_gt_labels = ref_mm_inputs['gt_labels']
ref_gt_masks = ref_mm_inputs['gt_masks']
losses = detector.forward(
img=imgs,
img_metas=img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
ref_img=ref_img,
ref_img_metas=[ref_img_metas],
ref_gt_bboxes=ref_gt_bboxes,
ref_gt_labels=ref_gt_labels,
gt_masks=gt_masks,
ref_gt_masks=ref_gt_masks,
return_loss=True)
assert isinstance(losses, dict)
loss, _ = detector._parse_losses(losses)
loss.requires_grad_(True)
assert float(loss.item()) > 0
loss.backward()
# Test forward train with an empty truth batch
mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
img_metas[0]['is_video_data'] = True
gt_bboxes = mm_inputs['gt_bboxes']
gt_labels = mm_inputs['gt_labels']
gt_masks = mm_inputs['gt_masks']
ref_mm_inputs = _demo_mm_inputs(ref_input_shape, num_items=[0, 0])
ref_imgs = ref_mm_inputs.pop('imgs')[None]
ref_img_metas = ref_mm_inputs.pop('img_metas')
ref_img_metas[0]['is_video_data'] = True
ref_img_metas[1]['is_video_data'] = True
ref_gt_bboxes = ref_mm_inputs['gt_bboxes']
ref_gt_labels = ref_mm_inputs['gt_labels']
ref_gt_masks = ref_mm_inputs['gt_masks']
losses = detector.forward(
img=imgs,
img_metas=img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
ref_img=ref_imgs,
ref_img_metas=[ref_img_metas],
ref_gt_bboxes=ref_gt_bboxes,
ref_gt_labels=ref_gt_labels,
gt_masks=gt_masks,
ref_gt_masks=ref_gt_masks,
return_loss=True)
assert isinstance(losses, dict)
loss, _ = detector._parse_losses(losses)
loss.requires_grad_(True)
assert float(loss.item()) > 0
loss.backward()
# Test forward test with frame_stride=1 and frame_range=[-1,0]
with torch.no_grad():
imgs = torch.cat([imgs, imgs.clone()], dim=0)
img_list = [g[None, :] for g in imgs]
img_metas.extend(copy.deepcopy(img_metas))
for i in range(len(img_metas)):
img_metas[i]['frame_id'] = i
img_metas[i]['num_left_ref_imgs'] = 1
img_metas[i]['frame_stride'] = 1
ref_imgs = [ref_imgs.clone(), imgs[[0]][None].clone()]
ref_img_metas = [
copy.deepcopy(ref_img_metas),
copy.deepcopy([img_metas[0]])
]
results = defaultdict(list)
for one_img, one_meta, ref_img, ref_img_meta in zip(
img_list, img_metas, ref_imgs, ref_img_metas):
result = detector.forward([one_img], [[one_meta]],
ref_img=[ref_img],
ref_img_metas=[[ref_img_meta]],
return_loss=False)
for k, v in result.items():
results[k].append(v)
@pytest.mark.parametrize('cfg_file', [
'./tests/data/configs_mmtrack/tracktor_faster-rcnn_r50_fpn_4e.py',
])
def test_tracktor_forward(cfg_file):
config = Config.fromfile(cfg_file)
model = copy.deepcopy(config.model)
model.pretrains = None
model.detector.pretrained = None
from mmtrack.models import build_model
mot = build_model(model)
mot.eval()
input_shape = (1, 3, 256, 256)
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10], with_track=True)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
with torch.no_grad():
imgs = torch.cat([imgs, imgs.clone()], dim=0)
img_list = [g[None, :] for g in imgs]
img2_metas = copy.deepcopy(img_metas)
img2_metas[0]['frame_id'] = 1
img_metas.extend(img2_metas)
results = defaultdict(list)
for one_img, one_meta in zip(img_list, img_metas):
result = mot.forward([one_img], [[one_meta]], return_loss=False)
for k, v in result.items():
results[k].append(v)
def _demo_mm_inputs(
input_shape=(1, 3, 300, 300),
num_items=None,
num_classes=10,
with_track=False):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_items (None | List[int]):
specifies the number of boxes in each batch item
num_classes (int):
number of different labels a box might have
"""
from mmdet.core import BitmapMasks
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
'frame_id': 0,
'img_norm_cfg': {
'mean': (128.0, 128.0, 128.0),
'std': (10.0, 10.0, 10.0)
}
} for i in range(N)]
gt_bboxes = []
gt_labels = []
gt_masks = []
gt_match_indices = []
for batch_idx in range(N):
if num_items is None:
num_boxes = rng.randint(1, 10)
else:
num_boxes = num_items[batch_idx]
cx, cy, bw, bh = rng.rand(num_boxes, 4).T
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W)
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H)
br_x = ((cx * W) + (W * bw / 2)).clip(0, W)
br_y = ((cy * H) + (H * bh / 2)).clip(0, H)
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
class_idxs = rng.randint(1, num_classes, size=num_boxes)
gt_bboxes.append(torch.FloatTensor(boxes))
gt_labels.append(torch.LongTensor(class_idxs))
if with_track:
gt_match_indices.append(torch.arange(boxes.shape[0]))
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8)
gt_masks.append(BitmapMasks(mask, H, W))
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_bboxes': gt_bboxes,
'gt_labels': gt_labels,
'gt_bboxes_ignore': None,
'gt_masks': gt_masks,
}
if with_track:
mm_inputs['gt_match_indices'] = gt_match_indices
return mm_inputs