camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmdet.core import BboxOverlaps2D, bbox_overlaps
from mmdet.core.evaluation.bbox_overlaps import \
bbox_overlaps as recall_overlaps
def test_bbox_overlaps_2d(eps=1e-7):
def _construct_bbox(num_bbox=None):
img_h = int(np.random.randint(3, 1000))
img_w = int(np.random.randint(3, 1000))
if num_bbox is None:
num_bbox = np.random.randint(1, 10)
x1y1 = torch.rand((num_bbox, 2))
x2y2 = torch.max(torch.rand((num_bbox, 2)), x1y1)
bboxes = torch.cat((x1y1, x2y2), -1)
bboxes[:, 0::2] *= img_w
bboxes[:, 1::2] *= img_h
return bboxes, num_bbox
# is_aligned is True, bboxes.size(-1) == 5 (include score)
self = BboxOverlaps2D()
bboxes1, num_bbox = _construct_bbox()
bboxes2, _ = _construct_bbox(num_bbox)
bboxes1 = torch.cat((bboxes1, torch.rand((num_bbox, 1))), 1)
bboxes2 = torch.cat((bboxes2, torch.rand((num_bbox, 1))), 1)
gious = self(bboxes1, bboxes2, 'giou', True)
assert gious.size() == (num_bbox, ), gious.size()
assert torch.all(gious >= -1) and torch.all(gious <= 1)
# is_aligned is True, bboxes1.size(-2) == 0
bboxes1 = torch.empty((0, 4))
bboxes2 = torch.empty((0, 4))
gious = self(bboxes1, bboxes2, 'giou', True)
assert gious.size() == (0, ), gious.size()
assert torch.all(gious == torch.empty((0, )))
assert torch.all(gious >= -1) and torch.all(gious <= 1)
# is_aligned is True, and bboxes.ndims > 2
bboxes1, num_bbox = _construct_bbox()
bboxes2, _ = _construct_bbox(num_bbox)
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1)
# test assertion when batch dim is not the same
with pytest.raises(AssertionError):
self(bboxes1, bboxes2.unsqueeze(0).repeat(3, 1, 1), 'giou', True)
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1)
gious = self(bboxes1, bboxes2, 'giou', True)
assert torch.all(gious >= -1) and torch.all(gious <= 1)
assert gious.size() == (2, num_bbox)
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1, 1)
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1, 1)
gious = self(bboxes1, bboxes2, 'giou', True)
assert torch.all(gious >= -1) and torch.all(gious <= 1)
assert gious.size() == (2, 2, num_bbox)
# is_aligned is False
bboxes1, num_bbox1 = _construct_bbox()
bboxes2, num_bbox2 = _construct_bbox()
gious = self(bboxes1, bboxes2, 'giou')
assert torch.all(gious >= -1) and torch.all(gious <= 1)
assert gious.size() == (num_bbox1, num_bbox2)
# is_aligned is False, and bboxes.ndims > 2
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1)
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1)
gious = self(bboxes1, bboxes2, 'giou')
assert torch.all(gious >= -1) and torch.all(gious <= 1)
assert gious.size() == (2, num_bbox1, num_bbox2)
bboxes1 = bboxes1.unsqueeze(0)
bboxes2 = bboxes2.unsqueeze(0)
gious = self(bboxes1, bboxes2, 'giou')
assert torch.all(gious >= -1) and torch.all(gious <= 1)
assert gious.size() == (1, 2, num_bbox1, num_bbox2)
# is_aligned is False, bboxes1.size(-2) == 0
gious = self(torch.empty(1, 2, 0, 4), bboxes2, 'giou')
assert torch.all(gious == torch.empty(1, 2, 0, bboxes2.size(-2)))
assert torch.all(gious >= -1) and torch.all(gious <= 1)
# test allclose between bbox_overlaps and the original official
# implementation.
bboxes1 = torch.FloatTensor([
[0, 0, 10, 10],
[10, 10, 20, 20],
[32, 32, 38, 42],
])
bboxes2 = torch.FloatTensor([
[0, 0, 10, 20],
[0, 10, 10, 19],
[10, 10, 20, 20],
])
gious = bbox_overlaps(bboxes1, bboxes2, 'giou', is_aligned=True, eps=eps)
gious = gious.numpy().round(4)
# the gt is got with four decimal precision.
expected_gious = np.array([0.5000, -0.0500, -0.8214])
assert np.allclose(gious, expected_gious, rtol=0, atol=eps)
# test mode 'iof'
ious = bbox_overlaps(bboxes1, bboxes2, 'iof', is_aligned=True, eps=eps)
assert torch.all(ious >= -1) and torch.all(ious <= 1)
assert ious.size() == (bboxes1.size(0), )
ious = bbox_overlaps(bboxes1, bboxes2, 'iof', eps=eps)
assert torch.all(ious >= -1) and torch.all(ious <= 1)
assert ious.size() == (bboxes1.size(0), bboxes2.size(0))
def test_voc_recall_overlaps():
def _construct_bbox(num_bbox=None):
img_h = int(np.random.randint(3, 1000))
img_w = int(np.random.randint(3, 1000))
if num_bbox is None:
num_bbox = np.random.randint(1, 10)
x1y1 = torch.rand((num_bbox, 2))
x2y2 = torch.max(torch.rand((num_bbox, 2)), x1y1)
bboxes = torch.cat((x1y1, x2y2), -1)
bboxes[:, 0::2] *= img_w
bboxes[:, 1::2] *= img_h
return bboxes.numpy(), num_bbox
bboxes1, num_bbox = _construct_bbox()
bboxes2, _ = _construct_bbox(num_bbox)
ious = recall_overlaps(
bboxes1, bboxes2, 'iou', use_legacy_coordinate=False)
assert ious.shape == (num_bbox, num_bbox)
assert np.all(ious >= -1) and np.all(ious <= 1)
ious = recall_overlaps(bboxes1, bboxes2, 'iou', use_legacy_coordinate=True)
assert ious.shape == (num_bbox, num_bbox)
assert np.all(ious >= -1) and np.all(ious <= 1)