|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from mmdet.core import BboxOverlaps2D, bbox_overlaps |
|
from mmdet.core.evaluation.bbox_overlaps import \ |
|
bbox_overlaps as recall_overlaps |
|
|
|
|
|
def test_bbox_overlaps_2d(eps=1e-7): |
|
|
|
def _construct_bbox(num_bbox=None): |
|
img_h = int(np.random.randint(3, 1000)) |
|
img_w = int(np.random.randint(3, 1000)) |
|
if num_bbox is None: |
|
num_bbox = np.random.randint(1, 10) |
|
x1y1 = torch.rand((num_bbox, 2)) |
|
x2y2 = torch.max(torch.rand((num_bbox, 2)), x1y1) |
|
bboxes = torch.cat((x1y1, x2y2), -1) |
|
bboxes[:, 0::2] *= img_w |
|
bboxes[:, 1::2] *= img_h |
|
return bboxes, num_bbox |
|
|
|
|
|
self = BboxOverlaps2D() |
|
bboxes1, num_bbox = _construct_bbox() |
|
bboxes2, _ = _construct_bbox(num_bbox) |
|
bboxes1 = torch.cat((bboxes1, torch.rand((num_bbox, 1))), 1) |
|
bboxes2 = torch.cat((bboxes2, torch.rand((num_bbox, 1))), 1) |
|
gious = self(bboxes1, bboxes2, 'giou', True) |
|
assert gious.size() == (num_bbox, ), gious.size() |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
|
|
|
|
bboxes1 = torch.empty((0, 4)) |
|
bboxes2 = torch.empty((0, 4)) |
|
gious = self(bboxes1, bboxes2, 'giou', True) |
|
assert gious.size() == (0, ), gious.size() |
|
assert torch.all(gious == torch.empty((0, ))) |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
|
|
|
|
bboxes1, num_bbox = _construct_bbox() |
|
bboxes2, _ = _construct_bbox(num_bbox) |
|
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1) |
|
|
|
with pytest.raises(AssertionError): |
|
self(bboxes1, bboxes2.unsqueeze(0).repeat(3, 1, 1), 'giou', True) |
|
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1) |
|
gious = self(bboxes1, bboxes2, 'giou', True) |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
assert gious.size() == (2, num_bbox) |
|
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1, 1) |
|
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1, 1) |
|
gious = self(bboxes1, bboxes2, 'giou', True) |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
assert gious.size() == (2, 2, num_bbox) |
|
|
|
|
|
bboxes1, num_bbox1 = _construct_bbox() |
|
bboxes2, num_bbox2 = _construct_bbox() |
|
gious = self(bboxes1, bboxes2, 'giou') |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
assert gious.size() == (num_bbox1, num_bbox2) |
|
|
|
|
|
bboxes1 = bboxes1.unsqueeze(0).repeat(2, 1, 1) |
|
bboxes2 = bboxes2.unsqueeze(0).repeat(2, 1, 1) |
|
gious = self(bboxes1, bboxes2, 'giou') |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
assert gious.size() == (2, num_bbox1, num_bbox2) |
|
bboxes1 = bboxes1.unsqueeze(0) |
|
bboxes2 = bboxes2.unsqueeze(0) |
|
gious = self(bboxes1, bboxes2, 'giou') |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
assert gious.size() == (1, 2, num_bbox1, num_bbox2) |
|
|
|
|
|
gious = self(torch.empty(1, 2, 0, 4), bboxes2, 'giou') |
|
assert torch.all(gious == torch.empty(1, 2, 0, bboxes2.size(-2))) |
|
assert torch.all(gious >= -1) and torch.all(gious <= 1) |
|
|
|
|
|
|
|
bboxes1 = torch.FloatTensor([ |
|
[0, 0, 10, 10], |
|
[10, 10, 20, 20], |
|
[32, 32, 38, 42], |
|
]) |
|
bboxes2 = torch.FloatTensor([ |
|
[0, 0, 10, 20], |
|
[0, 10, 10, 19], |
|
[10, 10, 20, 20], |
|
]) |
|
gious = bbox_overlaps(bboxes1, bboxes2, 'giou', is_aligned=True, eps=eps) |
|
gious = gious.numpy().round(4) |
|
|
|
expected_gious = np.array([0.5000, -0.0500, -0.8214]) |
|
assert np.allclose(gious, expected_gious, rtol=0, atol=eps) |
|
|
|
|
|
ious = bbox_overlaps(bboxes1, bboxes2, 'iof', is_aligned=True, eps=eps) |
|
assert torch.all(ious >= -1) and torch.all(ious <= 1) |
|
assert ious.size() == (bboxes1.size(0), ) |
|
ious = bbox_overlaps(bboxes1, bboxes2, 'iof', eps=eps) |
|
assert torch.all(ious >= -1) and torch.all(ious <= 1) |
|
assert ious.size() == (bboxes1.size(0), bboxes2.size(0)) |
|
|
|
|
|
def test_voc_recall_overlaps(): |
|
|
|
def _construct_bbox(num_bbox=None): |
|
img_h = int(np.random.randint(3, 1000)) |
|
img_w = int(np.random.randint(3, 1000)) |
|
if num_bbox is None: |
|
num_bbox = np.random.randint(1, 10) |
|
x1y1 = torch.rand((num_bbox, 2)) |
|
x2y2 = torch.max(torch.rand((num_bbox, 2)), x1y1) |
|
bboxes = torch.cat((x1y1, x2y2), -1) |
|
bboxes[:, 0::2] *= img_w |
|
bboxes[:, 1::2] *= img_h |
|
return bboxes.numpy(), num_bbox |
|
|
|
bboxes1, num_bbox = _construct_bbox() |
|
bboxes2, _ = _construct_bbox(num_bbox) |
|
ious = recall_overlaps( |
|
bboxes1, bboxes2, 'iou', use_legacy_coordinate=False) |
|
assert ious.shape == (num_bbox, num_bbox) |
|
assert np.all(ious >= -1) and np.all(ious <= 1) |
|
|
|
ious = recall_overlaps(bboxes1, bboxes2, 'iou', use_legacy_coordinate=True) |
|
assert ious.shape == (num_bbox, num_bbox) |
|
assert np.all(ious >= -1) and np.all(ious <= 1) |
|
|