|
|
|
import pytest |
|
import torch |
|
|
|
from mmdet.models.backbones.hrnet import HRModule, HRNet |
|
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck |
|
|
|
|
|
@pytest.mark.parametrize('block', [BasicBlock, Bottleneck]) |
|
def test_hrmodule(block): |
|
|
|
num_channles = (32, 64) |
|
in_channels = [c * block.expansion for c in num_channles] |
|
hrmodule = HRModule( |
|
num_branches=2, |
|
blocks=block, |
|
in_channels=in_channels, |
|
num_blocks=(4, 4), |
|
num_channels=num_channles, |
|
) |
|
|
|
feats = [ |
|
torch.randn(1, in_channels[0], 64, 64), |
|
torch.randn(1, in_channels[1], 32, 32) |
|
] |
|
feats = hrmodule(feats) |
|
|
|
assert len(feats) == 2 |
|
assert feats[0].shape == torch.Size([1, in_channels[0], 64, 64]) |
|
assert feats[1].shape == torch.Size([1, in_channels[1], 32, 32]) |
|
|
|
|
|
num_channles = (32, 64) |
|
in_channels = [c * block.expansion for c in num_channles] |
|
hrmodule = HRModule( |
|
num_branches=2, |
|
blocks=block, |
|
in_channels=in_channels, |
|
num_blocks=(4, 4), |
|
num_channels=num_channles, |
|
multiscale_output=False, |
|
) |
|
|
|
feats = [ |
|
torch.randn(1, in_channels[0], 64, 64), |
|
torch.randn(1, in_channels[1], 32, 32) |
|
] |
|
feats = hrmodule(feats) |
|
|
|
assert len(feats) == 1 |
|
assert feats[0].shape == torch.Size([1, in_channels[0], 64, 64]) |
|
|
|
|
|
def test_hrnet_backbone(): |
|
|
|
extra = dict( |
|
stage1=dict( |
|
num_modules=1, |
|
num_branches=1, |
|
block='BOTTLENECK', |
|
num_blocks=(4, ), |
|
num_channels=(64, )), |
|
stage2=dict( |
|
num_modules=1, |
|
num_branches=2, |
|
block='BASIC', |
|
num_blocks=(4, 4), |
|
num_channels=(32, 64)), |
|
stage3=dict( |
|
num_modules=4, |
|
num_branches=3, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4), |
|
num_channels=(32, 64, 128))) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
HRNet(extra=extra) |
|
extra['stage4'] = dict( |
|
num_modules=3, |
|
num_branches=3, |
|
block='BASIC', |
|
num_blocks=(4, 4, 4, 4), |
|
num_channels=(32, 64, 128, 256)) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
HRNet(extra=extra) |
|
|
|
extra['stage4']['num_branches'] = 4 |
|
|
|
|
|
model = HRNet(extra=extra) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 256, 256) |
|
feats = model(imgs) |
|
assert len(feats) == 4 |
|
assert feats[0].shape == torch.Size([1, 32, 64, 64]) |
|
assert feats[3].shape == torch.Size([1, 256, 8, 8]) |
|
|
|
|
|
model = HRNet(extra=extra, multiscale_output=False) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 256, 256) |
|
feats = model(imgs) |
|
assert len(feats) == 1 |
|
assert feats[0].shape == torch.Size([1, 32, 64, 64]) |
|
|