camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv import assert_params_all_zeros
from mmcv.ops import DeformConv2dPack
from torch.nn.modules import AvgPool2d, GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmdet.models.backbones import ResNet, ResNetV1d
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck
from mmdet.models.utils import ResLayer, SimplifiedBasicBlock
from .utils import check_norm_state, is_block, is_norm
def test_resnet_basic_block():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
BasicBlock(64, 64, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
BasicBlock(64, 64, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
BasicBlock(64, 64, plugins=plugins)
# test BasicBlock structure and forward
block = BasicBlock(64, 64)
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 64
assert block.conv1.kernel_size == (3, 3)
assert block.conv2.in_channels == 64
assert block.conv2.out_channels == 64
assert block.conv2.kernel_size == (3, 3)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test BasicBlock with checkpoint forward
block = BasicBlock(64, 64, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnet_bottleneck():
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
Bottleneck(64, 64, style='tensorflow')
with pytest.raises(AssertionError):
# Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv4')
]
Bottleneck(64, 16, plugins=plugins)
with pytest.raises(AssertionError):
# Need to specify different postfix to avoid duplicate plugin name
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
Bottleneck(64, 16, plugins=plugins)
with pytest.raises(KeyError):
# Plugin type is not supported
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
Bottleneck(64, 16, plugins=plugins)
# Test Bottleneck with checkpoint forward
block = Bottleneck(64, 16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck style
block = Bottleneck(64, 64, stride=2, style='pytorch')
assert block.conv1.stride == (1, 1)
assert block.conv2.stride == (2, 2)
block = Bottleneck(64, 64, stride=2, style='caffe')
assert block.conv1.stride == (2, 2)
assert block.conv2.stride == (1, 1)
# Test Bottleneck DCN
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
with pytest.raises(AssertionError):
Bottleneck(64, 64, dcn=dcn, conv_cfg=dict(type='Conv'))
block = Bottleneck(64, 64, dcn=dcn)
assert isinstance(block.conv2, DeformConv2dPack)
# Test Bottleneck forward
block = Bottleneck(64, 16)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.gen_attention_block.in_channels == 16
assert block.nonlocal_block.in_channels == 16
assert block.context_block.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
# conv3
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
position='after_conv3')
]
block = Bottleneck(64, 16, plugins=plugins)
assert block.context_block1.in_channels == 16
assert block.context_block2.in_channels == 64
assert block.context_block3.in_channels == 64
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_simplied_basic_block():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
SimplifiedBasicBlock(64, 64, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
SimplifiedBasicBlock(64, 64, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
SimplifiedBasicBlock(64, 64, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
SimplifiedBasicBlock(64, 64, with_cp=True)
# test SimplifiedBasicBlock structure and forward
block = SimplifiedBasicBlock(64, 64)
assert block.conv1.in_channels == 64
assert block.conv1.out_channels == 64
assert block.conv1.kernel_size == (3, 3)
assert block.conv2.in_channels == 64
assert block.conv2.out_channels == 64
assert block.conv2.kernel_size == (3, 3)
x = torch.randn(1, 64, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# test SimplifiedBasicBlock without norm
block = SimplifiedBasicBlock(64, 64, norm_cfg=None)
assert block.norm1 is None
assert block.norm2 is None
x_out = block(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
def test_resnet_res_layer():
# Test ResLayer of 3 Bottleneck w\o downsample
layer = ResLayer(Bottleneck, 64, 16, 3)
assert len(layer) == 3
assert layer[0].conv1.in_channels == 64
assert layer[0].conv1.out_channels == 16
for i in range(1, len(layer)):
assert layer[i].conv1.in_channels == 64
assert layer[i].conv1.out_channels == 16
for i in range(len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 64, 56, 56])
# Test ResLayer of 3 Bottleneck with downsample
layer = ResLayer(Bottleneck, 64, 64, 3)
assert layer[0].downsample[0].out_channels == 256
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 56, 56])
# Test ResLayer of 3 Bottleneck with stride=2
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2)
assert layer[0].downsample[0].out_channels == 256
assert layer[0].downsample[0].stride == (2, 2)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
# Test ResLayer of 3 Bottleneck with stride=2 and average downsample
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True)
assert isinstance(layer[0].downsample[0], AvgPool2d)
assert layer[0].downsample[1].out_channels == 256
assert layer[0].downsample[1].stride == (1, 1)
for i in range(1, len(layer)):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 256, 28, 28])
# Test ResLayer of 3 BasicBlock with stride=2 and downsample_first=False
layer = ResLayer(BasicBlock, 64, 64, 3, stride=2, downsample_first=False)
assert layer[2].downsample[0].out_channels == 64
assert layer[2].downsample[0].stride == (2, 2)
for i in range(len(layer) - 1):
assert layer[i].downsample is None
x = torch.randn(1, 64, 56, 56)
x_out = layer(x)
assert x_out.shape == torch.Size([1, 64, 28, 28])
def test_resnest_stem():
# Test default stem_channels
model = ResNet(50)
assert model.stem_channels == 64
assert model.conv1.out_channels == 64
assert model.norm1.num_features == 64
# Test default stem_channels, with base_channels=3
model = ResNet(50, base_channels=3)
assert model.stem_channels == 3
assert model.conv1.out_channels == 3
assert model.norm1.num_features == 3
assert model.layer1[0].conv1.in_channels == 3
# Test stem_channels=3
model = ResNet(50, stem_channels=3)
assert model.stem_channels == 3
assert model.conv1.out_channels == 3
assert model.norm1.num_features == 3
assert model.layer1[0].conv1.in_channels == 3
# Test stem_channels=3, with base_channels=2
model = ResNet(50, stem_channels=3, base_channels=2)
assert model.stem_channels == 3
assert model.conv1.out_channels == 3
assert model.norm1.num_features == 3
assert model.layer1[0].conv1.in_channels == 3
# Test V1d stem_channels
model = ResNetV1d(depth=50, stem_channels=6)
model.train()
assert model.stem[0].out_channels == 3
assert model.stem[1].num_features == 3
assert model.stem[3].out_channels == 3
assert model.stem[4].num_features == 3
assert model.stem[6].out_channels == 6
assert model.stem[7].num_features == 6
assert model.layer1[0].conv1.in_channels == 6
def test_resnet_backbone():
"""Test resnet backbone."""
with pytest.raises(KeyError):
# ResNet depth should be in [18, 34, 50, 101, 152]
ResNet(20)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=0)
with pytest.raises(AssertionError):
# len(stage_with_dcn) == num_stages
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
ResNet(50, dcn=dcn, stage_with_dcn=(True, ))
with pytest.raises(AssertionError):
# len(stage_with_plugin) == num_stages
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
stages=(False, True, True),
position='after_conv3')
]
ResNet(50, plugins=plugins)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=5)
with pytest.raises(AssertionError):
# len(strides) == len(dilations) == num_stages
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with pytest.raises(TypeError):
# pretrained must be a string path
model = ResNet(50, pretrained=0)
with pytest.raises(AssertionError):
# Style must be in ['pytorch', 'caffe']
ResNet(50, style='tensorflow')
# Test ResNet50 norm_eval=True
model = ResNet(50, norm_eval=True, base_channels=1)
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with torchvision pretrained weight
model = ResNet(
depth=50, norm_eval=True, pretrained='torchvision://resnet50')
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with first stage frozen
frozen_stages = 1
model = ResNet(50, frozen_stages=frozen_stages, base_channels=1)
model.train()
assert model.norm1.training is False
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet50V1d with first stage frozen
model = ResNetV1d(depth=50, frozen_stages=frozen_stages, base_channels=2)
assert len(model.stem) == 9
model.train()
assert check_norm_state(model.stem, False)
for param in model.stem.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet18 forward
model = ResNet(18)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 64, 8, 8])
assert feat[1].shape == torch.Size([1, 128, 4, 4])
assert feat[2].shape == torch.Size([1, 256, 2, 2])
assert feat[3].shape == torch.Size([1, 512, 1, 1])
# Test ResNet18 with checkpoint forward
model = ResNet(18, with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
# Test ResNet50 with BatchNorm forward
model = ResNet(50, base_channels=1)
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 4, 8, 8])
assert feat[1].shape == torch.Size([1, 8, 4, 4])
assert feat[2].shape == torch.Size([1, 16, 2, 2])
assert feat[3].shape == torch.Size([1, 32, 1, 1])
# Test ResNet50 with layers 1, 2, 3 out forward
model = ResNet(50, out_indices=(0, 1, 2), base_channels=1)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size([1, 4, 8, 8])
assert feat[1].shape == torch.Size([1, 8, 4, 4])
assert feat[2].shape == torch.Size([1, 16, 2, 2])
# Test ResNet50 with checkpoint forward
model = ResNet(50, with_cp=True, base_channels=1)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 4, 8, 8])
assert feat[1].shape == torch.Size([1, 8, 4, 4])
assert feat[2].shape == torch.Size([1, 16, 2, 2])
assert feat[3].shape == torch.Size([1, 32, 1, 1])
# Test ResNet50 with GroupNorm forward
model = ResNet(
50,
base_channels=4,
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 16, 8, 8])
assert feat[1].shape == torch.Size([1, 32, 4, 4])
assert feat[2].shape == torch.Size([1, 64, 2, 2])
assert feat[3].shape == torch.Size([1, 128, 1, 1])
# Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D
# after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
stages=(False, True, True, True),
position='after_conv2'),
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
stages=(False, True, True, False),
position='after_conv3')
]
model = ResNet(50, plugins=plugins, base_channels=8)
for m in model.layer1.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'gen_attention_block')
assert m.nonlocal_block.in_channels == 8
for m in model.layer2.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 16
assert m.gen_attention_block.in_channels == 16
assert m.context_block.in_channels == 64
for m in model.layer3.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 32
assert m.gen_attention_block.in_channels == 32
assert m.context_block.in_channels == 128
for m in model.layer4.modules():
if is_block(m):
assert m.nonlocal_block.in_channels == 64
assert m.gen_attention_block.in_channels == 64
assert not hasattr(m, 'context_block')
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 32, 8, 8])
assert feat[1].shape == torch.Size([1, 64, 4, 4])
assert feat[2].shape == torch.Size([1, 128, 2, 2])
assert feat[3].shape == torch.Size([1, 256, 1, 1])
# Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after
# conv3 in layers 2, 3, 4
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
stages=(False, True, True, False),
position='after_conv3'),
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
stages=(False, True, True, False),
position='after_conv3')
]
model = ResNet(50, plugins=plugins, base_channels=8)
for m in model.layer1.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'context_block1')
assert not hasattr(m, 'context_block2')
for m in model.layer2.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert m.context_block1.in_channels == 64
assert m.context_block2.in_channels == 64
for m in model.layer3.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert m.context_block1.in_channels == 128
assert m.context_block2.in_channels == 128
for m in model.layer4.modules():
if is_block(m):
assert not hasattr(m, 'context_block')
assert not hasattr(m, 'context_block1')
assert not hasattr(m, 'context_block2')
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 32, 8, 8])
assert feat[1].shape == torch.Size([1, 64, 4, 4])
assert feat[2].shape == torch.Size([1, 128, 2, 2])
assert feat[3].shape == torch.Size([1, 256, 1, 1])
# Test ResNet50 zero initialization of residual
model = ResNet(50, zero_init_residual=True, base_channels=1)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
assert assert_params_all_zeros(m.norm3)
elif isinstance(m, BasicBlock):
assert assert_params_all_zeros(m.norm2)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 4, 8, 8])
assert feat[1].shape == torch.Size([1, 8, 4, 4])
assert feat[2].shape == torch.Size([1, 16, 2, 2])
assert feat[3].shape == torch.Size([1, 32, 1, 1])
# Test ResNetV1d forward
model = ResNetV1d(depth=50, base_channels=2)
model.train()
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size([1, 8, 8, 8])
assert feat[1].shape == torch.Size([1, 16, 4, 4])
assert feat[2].shape == torch.Size([1, 32, 2, 2])
assert feat[3].shape == torch.Size([1, 64, 1, 1])