camenduru's picture
thanks to show ❤
3bbb319
import pytest
import torch
from mmdet.models.backbones.swin import SwinBlock, SwinTransformer
def test_swin_block():
# test SwinBlock structure and forward
block = SwinBlock(embed_dims=64, num_heads=4, feedforward_channels=256)
assert block.ffn.embed_dims == 64
assert block.attn.w_msa.num_heads == 4
assert block.ffn.feedforward_channels == 256
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
assert x_out.shape == torch.Size([1, 56 * 56, 64])
# Test BasicBlock with checkpoint forward
block = SwinBlock(
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
assert block.with_cp
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
assert x_out.shape == torch.Size([1, 56 * 56, 64])
def test_swin_transformer():
"""Test Swin Transformer backbone."""
with pytest.raises(TypeError):
# Pretrained arg must be str or None.
SwinTransformer(pretrained=123)
with pytest.raises(AssertionError):
# Because swin uses non-overlapping patch embed, so the stride of patch
# embed must be equal to patch size.
SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
# test pretrained image size
with pytest.raises(AssertionError):
SwinTransformer(pretrain_img_size=(224, 224, 224))
# Test absolute position embedding
temp = torch.randn((1, 3, 224, 224))
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
model.init_weights()
model(temp)
# Test different inputs when use absolute position embedding
temp = torch.randn((1, 3, 112, 112))
model(temp)
temp = torch.randn((1, 3, 256, 256))
model(temp)
# Test patch norm
model = SwinTransformer(patch_norm=False)
model(temp)
# Test normal inference
temp = torch.randn((1, 3, 32, 32))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 8, 8)
assert outs[1].shape == (1, 192, 4, 4)
assert outs[2].shape == (1, 384, 2, 2)
assert outs[3].shape == (1, 768, 1, 1)
# Test abnormal inference size
temp = torch.randn((1, 3, 31, 31))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 8, 8)
assert outs[1].shape == (1, 192, 4, 4)
assert outs[2].shape == (1, 384, 2, 2)
assert outs[3].shape == (1, 768, 1, 1)
# Test abnormal inference size
temp = torch.randn((1, 3, 112, 137))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 28, 35)
assert outs[1].shape == (1, 192, 14, 18)
assert outs[2].shape == (1, 384, 7, 9)
assert outs[3].shape == (1, 768, 4, 5)
model = SwinTransformer(frozen_stages=4)
model.train()
for p in model.parameters():
assert not p.requires_grad