camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
import torch
from mmdet.models.dense_heads import PAAHead, paa_head
from mmdet.models.dense_heads.paa_head import levels_to_images
def test_paa_head_loss():
"""Tests paa head loss when truth is empty and non-empty."""
class mock_skm:
def GaussianMixture(self, *args, **kwargs):
return self
def fit(self, loss):
pass
def predict(self, loss):
components = np.zeros_like(loss, dtype=np.long)
return components.reshape(-1)
def score_samples(self, loss):
scores = np.random.random(len(loss))
return scores
paa_head.skm = mock_skm()
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
train_cfg = mmcv.Config(
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.1,
neg_iou_thr=0.1,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False))
# since Focal Loss is not supported on CPU
self = PAAHead(
num_classes=4,
in_channels=1,
train_cfg=train_cfg,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
self.init_weights()
cls_scores, bbox_preds, iou_preds = self(feat)
# Test that empty ground truth encourages the network to predict background
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes,
gt_labels, img_metas, gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
empty_iou_loss = empty_gt_losses['loss_iou']
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_box_loss.item() == 0, (
'there should be no box loss when there are no true boxes')
assert empty_iou_loss.item() == 0, (
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss should be nonzero for
# random inputs
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
one_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes,
gt_labels, img_metas, gt_bboxes_ignore)
onegt_cls_loss = one_gt_losses['loss_cls']
onegt_box_loss = one_gt_losses['loss_bbox']
onegt_iou_loss = one_gt_losses['loss_iou']
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
assert onegt_iou_loss.item() > 0, 'box loss should be non-zero'
n, c, h, w = 10, 4, 20, 20
mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)]
results = levels_to_images(mlvl_tensor)
assert len(results) == n
assert results[0].size() == (h * w * 5, c)
assert self.with_score_voting
self = PAAHead(
num_classes=4,
in_channels=1,
train_cfg=train_cfg,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
cls_scores = [torch.ones(2, 4, 5, 5)]
bbox_preds = [torch.ones(2, 4, 5, 5)]
iou_preds = [torch.ones(2, 1, 5, 5)]
cfg = mmcv.Config(
dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
rescale = False
self.get_bboxes(
cls_scores, bbox_preds, iou_preds, img_metas, cfg, rescale=rescale)