|
import pytest |
|
import torch |
|
|
|
from mmdet.models.dense_heads import (DecoupledSOLOHead, |
|
DecoupledSOLOLightHead, SOLOHead) |
|
|
|
|
|
def test_solo_head_loss(): |
|
"""Tests solo head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
self = SOLOHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[40, 36, 24, 16, 12], |
|
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
mask_preds, cls_preds = self.forward(feat) |
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_masks = [torch.empty((0, 550, 550))] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses = self.loss( |
|
mask_preds, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
|
|
empty_mask_loss = empty_gt_losses['loss_mask'] |
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_mask_loss.item() == 0, ( |
|
'there should be no mask loss when there are no true masks') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()] |
|
one_gt_losses = self.loss( |
|
mask_preds, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
onegt_mask_loss = one_gt_losses['loss_mask'] |
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
SOLOHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[36, 24, 16, 12], |
|
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32] |
|
] |
|
self.forward(feat) |
|
|
|
|
|
def test_desolo_head_loss(): |
|
"""Tests solo head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
self = DecoupledSOLOHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[40, 36, 24, 16, 12], |
|
loss_mask=dict( |
|
type='DiceLoss', use_sigmoid=True, activate=False, |
|
loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
mask_preds_x, mask_preds_y, cls_preds = self.forward(feat) |
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_masks = [torch.empty((0, 550, 550))] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses = self.loss( |
|
mask_preds_x, |
|
mask_preds_y, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
|
|
empty_mask_loss = empty_gt_losses['loss_mask'] |
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_mask_loss.item() == 0, ( |
|
'there should be no mask loss when there are no true masks') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()] |
|
one_gt_losses = self.loss( |
|
mask_preds_x, |
|
mask_preds_y, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
onegt_mask_loss = one_gt_losses['loss_mask'] |
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
DecoupledSOLOHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[36, 24, 16, 12], |
|
loss_mask=dict( |
|
type='DiceLoss', |
|
use_sigmoid=True, |
|
activate=False, |
|
loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32] |
|
] |
|
self.forward(feat) |
|
|
|
|
|
def test_desolo_light_head_loss(): |
|
"""Tests solo head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
self = DecoupledSOLOLightHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[40, 36, 24, 16, 12], |
|
loss_mask=dict( |
|
type='DiceLoss', use_sigmoid=True, activate=False, |
|
loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
mask_preds_x, mask_preds_y, cls_preds = self.forward(feat) |
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_masks = [torch.empty((0, 550, 550))] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses = self.loss( |
|
mask_preds_x, |
|
mask_preds_y, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
|
|
empty_mask_loss = empty_gt_losses['loss_mask'] |
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_mask_loss.item() == 0, ( |
|
'there should be no mask loss when there are no true masks') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()] |
|
one_gt_losses = self.loss( |
|
mask_preds_x, |
|
mask_preds_y, |
|
cls_preds, |
|
gt_labels, |
|
gt_masks, |
|
img_metas, |
|
gt_bboxes, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
onegt_mask_loss = one_gt_losses['loss_mask'] |
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
DecoupledSOLOLightHead( |
|
num_classes=4, |
|
in_channels=1, |
|
num_grids=[36, 24, 16, 12], |
|
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0), |
|
loss_cls=dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0)) |
|
|
|
|
|
with pytest.raises(AssertionError): |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32] |
|
] |
|
self.forward(feat) |
|
|