camenduru's picture
thanks to show ❤
3bbb319
import pytest
import torch
from mmdet.models.dense_heads import (DecoupledSOLOHead,
DecoupledSOLOLightHead, SOLOHead)
def test_solo_head_loss():
"""Tests solo head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
self = SOLOHead(
num_classes=4,
in_channels=1,
num_grids=[40, 36, 24, 16, 12],
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
mask_preds, cls_preds = self.forward(feat)
# Test that empty ground truth encourages the network to
# predict background.
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_masks = [torch.empty((0, 550, 550))]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(
mask_preds,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_mask_loss = empty_gt_losses['loss_mask']
empty_cls_loss = empty_gt_losses['loss_cls']
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_mask_loss.item() == 0, (
'there should be no mask loss when there are no true masks')
# When truth is non-empty then both cls and box loss should be nonzero for
# random inputs.
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()]
one_gt_losses = self.loss(
mask_preds,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
onegt_mask_loss = one_gt_losses['loss_mask']
onegt_cls_loss = one_gt_losses['loss_cls']
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero'
# When the length of num_grids, scale_ranges, and num_levels are not equal.
with pytest.raises(AssertionError):
SOLOHead(
num_classes=4,
in_channels=1,
num_grids=[36, 24, 16, 12],
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
# When input feature length is not equal to num_levels.
with pytest.raises(AssertionError):
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32]
]
self.forward(feat)
def test_desolo_head_loss():
"""Tests solo head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
self = DecoupledSOLOHead(
num_classes=4,
in_channels=1,
num_grids=[40, 36, 24, 16, 12],
loss_mask=dict(
type='DiceLoss', use_sigmoid=True, activate=False,
loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
mask_preds_x, mask_preds_y, cls_preds = self.forward(feat)
# Test that empty ground truth encourages the network to
# predict background.
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_masks = [torch.empty((0, 550, 550))]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(
mask_preds_x,
mask_preds_y,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_mask_loss = empty_gt_losses['loss_mask']
empty_cls_loss = empty_gt_losses['loss_cls']
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_mask_loss.item() == 0, (
'there should be no mask loss when there are no true masks')
# When truth is non-empty then both cls and box loss should be nonzero for
# random inputs.
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()]
one_gt_losses = self.loss(
mask_preds_x,
mask_preds_y,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
onegt_mask_loss = one_gt_losses['loss_mask']
onegt_cls_loss = one_gt_losses['loss_cls']
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero'
# When the length of num_grids, scale_ranges, and num_levels are not equal.
with pytest.raises(AssertionError):
DecoupledSOLOHead(
num_classes=4,
in_channels=1,
num_grids=[36, 24, 16, 12],
loss_mask=dict(
type='DiceLoss',
use_sigmoid=True,
activate=False,
loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
# When input feature length is not equal to num_levels.
with pytest.raises(AssertionError):
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32]
]
self.forward(feat)
def test_desolo_light_head_loss():
"""Tests solo head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
self = DecoupledSOLOLightHead(
num_classes=4,
in_channels=1,
num_grids=[40, 36, 24, 16, 12],
loss_mask=dict(
type='DiceLoss', use_sigmoid=True, activate=False,
loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
mask_preds_x, mask_preds_y, cls_preds = self.forward(feat)
# Test that empty ground truth encourages the network to
# predict background.
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_masks = [torch.empty((0, 550, 550))]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(
mask_preds_x,
mask_preds_y,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_mask_loss = empty_gt_losses['loss_mask']
empty_cls_loss = empty_gt_losses['loss_cls']
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_mask_loss.item() == 0, (
'there should be no mask loss when there are no true masks')
# When truth is non-empty then both cls and box loss should be nonzero for
# random inputs.
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
gt_masks = [(torch.rand((1, 256, 256)) > 0.5).float()]
one_gt_losses = self.loss(
mask_preds_x,
mask_preds_y,
cls_preds,
gt_labels,
gt_masks,
img_metas,
gt_bboxes,
gt_bboxes_ignore=gt_bboxes_ignore)
onegt_mask_loss = one_gt_losses['loss_mask']
onegt_cls_loss = one_gt_losses['loss_cls']
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero'
# When the length of num_grids, scale_ranges, and num_levels are not equal.
with pytest.raises(AssertionError):
DecoupledSOLOLightHead(
num_classes=4,
in_channels=1,
num_grids=[36, 24, 16, 12],
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0))
# When input feature length is not equal to num_levels.
with pytest.raises(AssertionError):
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32]
]
self.forward(feat)