|
|
|
"""pytest tests/test_loss_compatibility.py.""" |
|
import copy |
|
from os.path import dirname, exists, join |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined detector config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(dirname(__file__))) |
|
except NameError: |
|
|
|
import mmdet |
|
repo_dpath = dirname(dirname(mmdet.__file__)) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
"""Load a configuration as a python module.""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_detector_cfg(fname): |
|
"""Grab configs necessary to create a detector. |
|
|
|
These are deep copied to allow for safe modification of parameters without |
|
influencing other tests. |
|
""" |
|
config = _get_config_module(fname) |
|
model = copy.deepcopy(config.model) |
|
return model |
|
|
|
|
|
@pytest.mark.parametrize('loss_bbox', [ |
|
dict(type='L1Loss', loss_weight=1.0), |
|
dict(type='GHMR', mu=0.02, bins=10, momentum=0.7, loss_weight=10.0), |
|
dict(type='IoULoss', loss_weight=1.0), |
|
dict(type='BoundedIoULoss', loss_weight=1.0), |
|
dict(type='GIoULoss', loss_weight=1.0), |
|
dict(type='DIoULoss', loss_weight=1.0), |
|
dict(type='CIoULoss', loss_weight=1.0), |
|
dict(type='MSELoss', loss_weight=1.0), |
|
dict(type='SmoothL1Loss', loss_weight=1.0), |
|
dict(type='BalancedL1Loss', loss_weight=1.0) |
|
]) |
|
def test_bbox_loss_compatibility(loss_bbox): |
|
"""Test loss_bbox compatibility. |
|
|
|
Using Faster R-CNN as a sample, modifying the loss function in the config |
|
file to verify the compatibility of Loss APIS |
|
""" |
|
|
|
config_path = '_base_/models/faster_rcnn_r50_fpn.py' |
|
cfg_model = _get_detector_cfg(config_path) |
|
|
|
input_shape = (1, 3, 256, 256) |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
if 'IoULoss' in loss_bbox['type']: |
|
cfg_model.roi_head.bbox_head.reg_decoded_bbox = True |
|
|
|
cfg_model.roi_head.bbox_head.loss_bbox = loss_bbox |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(cfg_model) |
|
|
|
loss = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) |
|
assert isinstance(loss, dict) |
|
loss, _ = detector._parse_losses(loss) |
|
assert float(loss.item()) > 0 |
|
|
|
|
|
@pytest.mark.parametrize('loss_cls', [ |
|
dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
dict( |
|
type='FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
dict( |
|
type='GHMC', bins=30, momentum=0.75, use_sigmoid=True, loss_weight=1.0) |
|
]) |
|
def test_cls_loss_compatibility(loss_cls): |
|
"""Test loss_cls compatibility. |
|
|
|
Using Faster R-CNN as a sample, modifying the loss function in the config |
|
file to verify the compatibility of Loss APIS |
|
""" |
|
|
|
config_path = '_base_/models/faster_rcnn_r50_fpn.py' |
|
cfg_model = _get_detector_cfg(config_path) |
|
|
|
input_shape = (1, 3, 256, 256) |
|
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) |
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
|
|
|
|
|
|
cfg_model.roi_head.bbox_head.loss_cls = loss_cls |
|
|
|
from mmdet.models import build_detector |
|
detector = build_detector(cfg_model) |
|
|
|
loss = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) |
|
assert isinstance(loss, dict) |
|
loss, _ = detector._parse_losses(loss) |
|
assert float(loss.item()) > 0 |
|
|
|
|
|
def _demo_mm_inputs(input_shape=(1, 3, 300, 300), |
|
num_items=None, num_classes=10, |
|
with_semantic=False): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
|
|
num_items (None | List[int]): |
|
specifies the number of boxes in each batch item |
|
|
|
num_classes (int): |
|
number of different labels a box might have |
|
""" |
|
from mmdet.core import BitmapMasks |
|
|
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': np.array([1.1, 1.2, 1.1, 1.2]), |
|
'flip': False, |
|
'flip_direction': None, |
|
} for _ in range(N)] |
|
|
|
gt_bboxes = [] |
|
gt_labels = [] |
|
gt_masks = [] |
|
|
|
for batch_idx in range(N): |
|
if num_items is None: |
|
num_boxes = rng.randint(1, 10) |
|
else: |
|
num_boxes = num_items[batch_idx] |
|
|
|
cx, cy, bw, bh = rng.rand(num_boxes, 4).T |
|
|
|
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) |
|
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) |
|
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) |
|
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) |
|
|
|
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T |
|
class_idxs = rng.randint(1, num_classes, size=num_boxes) |
|
|
|
gt_bboxes.append(torch.FloatTensor(boxes)) |
|
gt_labels.append(torch.LongTensor(class_idxs)) |
|
|
|
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) |
|
gt_masks.append(BitmapMasks(mask, H, W)) |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_bboxes': gt_bboxes, |
|
'gt_labels': gt_labels, |
|
'gt_bboxes_ignore': None, |
|
'gt_masks': gt_masks, |
|
} |
|
|
|
if with_semantic: |
|
|
|
gt_semantic_seg = np.random.randint( |
|
0, num_classes, (1, 1, H // 8, W // 8), dtype=np.uint8) |
|
mm_inputs.update( |
|
{'gt_semantic_seg': torch.ByteTensor(gt_semantic_seg)}) |
|
|
|
return mm_inputs |
|
|