camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn.functional as F
from mmcv.cnn import constant_init
from mmdet.models.utils import DyReLU, SELayer
def test_se_layer():
with pytest.raises(AssertionError):
# act_cfg sequence length must equal to 2
SELayer(channels=32, act_cfg=(dict(type='ReLU'), ))
with pytest.raises(AssertionError):
# act_cfg sequence must be a tuple of dict
SELayer(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')])
# Test SELayer forward
layer = SELayer(channels=32)
layer.init_weights()
layer.train()
x = torch.randn((1, 32, 10, 10))
x_out = layer(x)
assert x_out.shape == torch.Size((1, 32, 10, 10))
def test_dyrelu():
with pytest.raises(AssertionError):
# act_cfg sequence length must equal to 2
DyReLU(channels=32, act_cfg=(dict(type='ReLU'), ))
with pytest.raises(AssertionError):
# act_cfg sequence must be a tuple of dict
DyReLU(channels=32, act_cfg=[dict(type='ReLU'), dict(type='ReLU')])
# Test DyReLU forward
layer = DyReLU(channels=32)
layer.init_weights()
layer.train()
x = torch.randn((1, 32, 10, 10))
x_out = layer(x)
assert x_out.shape == torch.Size((1, 32, 10, 10))
# DyReLU should act as standard (static) ReLU
# when eliminating the effect of SE-like module
layer = DyReLU(channels=32)
constant_init(layer.conv2.conv, 0)
layer.train()
x = torch.randn((1, 32, 10, 10))
x_out = layer(x)
relu_out = F.relu(x)
assert torch.equal(x_out, relu_out)